加拿大數位隱私法(Digital Privacy Act)於2015年6月18日獲得皇室御准,該法目的係為修訂規範私部門運用個人資料的聯邦個人資料保護及電子文件法(Personal Information Protection and Electronic Documents Act, PIPEDA)。該法有多個章節於公告時便即刻施行,但仍有部分章節需待日後其他行政機關公告配套之法規後始能正式施行,例如該法的重點章節之一:「安全防護措施之違反」(Breaches of Security Safeguards)。 歷經約莫兩年,加拿大創新、科學及經濟發展部(Innovation, Science and Economic Development Canada)於2017年9月2日公告安全防護措施違反之規則草案(Breaches of Security Safeguards Regulations),以及規則衝擊分析聲明(Regulatory Impact Analysis Statement)。草案自公告時起開放30天供相關利益關係人發表意見,未來將和數位隱私法的「安全防護措施之違反」同時生效施行。 草案制定目的在於確保加拿大本國人若遇有資料外洩且具有損害風險時,可收到精確的相關資訊。私部門對本人的通知應包含使本人可理解外洩的衝擊和影響的詳細資訊。草案確保加拿大個人資料保護公署(Office of the Privacy Commissioner of Canada)之專員亦能獲得有關資料外洩的確實且對等資訊,並可監督、確認私部門遵守法規並執行。草案詳載私部門於通報個人資料保護公署時應提交的資訊,以及通知本人時應提供的資訊,且不限制私部門額外提供其他資訊。遇有資料外洩情事而故意不即時通報個人資料保護公署或通知本人者,最高將可處十萬美金罰鍰。
美國司法部提出更嚴格的著作權法草案美國司法部於 11月10日提出更嚴格的著作權法草案,凡是未經著作所有權人許可,而拷貝音樂、電影者,可能面臨坐牢的命運。 這項草案由美國司法部長 Alberto Gonzales在一個反盜版的高峰會議中所提出的構想。草案內容擴大對智慧財產權的保護範疇,其中涵蓋試圖非法拷貝音樂、電影、軟體,或是其他具著作權物品的未遂行為。並且,草案賦予調查人員可以扣押因販賣盜版而購置的財產,例如做為未來拷貝用的空白CD。另外,也討論到違反著作權者,將強迫對著作所有權人進行賠償,累犯者也必須面臨較嚴厲的刑責。 Alberto Gonzales在記者會中提及: “這項法律的制訂,反映出布希政府及司法部一貫的承諾,也就是我們會竭盡所能的對抗盜版問題” 唱片業團體對此法案表示高度讚揚。然而,公益團體 Public Knowledge卻指出,司法部亦需考慮其他能夠保護消費者合理使用權的方法。 近年,國會強化著作權法幫助媒體公司對抗其作品遭受氾濫的非法拷貝。並且,執法者已逐漸鎖定在電影撥放幾小時後,就將其置於網路上的拷貝集團。 美國最高法院在六月以 9-0的裁定,讓娛樂業者能對盜版行為予以痛擊。裁定中指出,假若檔案交易(file-trading)公司涉及引誘使用者違反著作權法時,檔案交易公司亦需負責。
遊戲內容標示不實,FTC將開罰許多玩家所引頸期待的遊戲:『橫行霸道:聖安地列斯』( Grand Theft Auto: San Andreas )在今年風光上市。其遊戲的內容不僅可以欣賞到 洛杉磯、舊金山與拉斯維加斯等地維妙維肖的城市風景外,更可以滿足玩家瘋狂的想像,如:殺人放火、參與幫派火拼等。但也由於遊戲內容充斥過多的血腥、暴力與色情情節, 根據美國分級制度 Entertainment Software Rating Board ( ESRB )的分類,本遊戲應該是屬於「只限成人( AO, Adults Only )」,不過本遊戲在說明書上只有標示 M ( Mature )等級,意指適合十七歲以上的人購買。 Rockstar 公司的行動違反廠商自律以及欺騙消費者。對 FTC 來說,這是非常嚴重的問題, FTC 並且警告 Rockstar 公司須對產品重新包裝並標示,如不改善,將處以高額的罰款
美國國家標準暨技術研究院規劃建立「人工智慧風險管理框架」,並徵詢公眾對於該框架之意見美國國家標準暨技術研究院(National Institute of Standards and Technology, NIST)為管理人工智慧對於個人、組織以及社會所帶來之風險,於2021年7月29日提出將建立「人工智慧風險管理框架」(Artificial Intelligence Risk Management Framework, AI RMF)之規畫並徵詢公眾意見,截止日為9月15日,並預計於10月發布正式報告。 依照NIST說明,公眾所建議之人工智慧風險管理框架,可促進人工智慧之可信賴性,其中包含如何應對並解決人工智慧於設計、發展及使用過程中所遭遇之「精確度」(accuracy)、「可解釋性」(explainability)、「偏見」(bias)等議題。此外,上開管理框架預計為非強制性、供企業自願性使用於人工智慧設計、發展、使用、衡量及評估之人工智慧標準。 依現有公眾意見徵詢結果,其中DeepMind公司建議於人工智慧設計初期,必須預先構思整體系統之假設是否符合真正社會因果關係。舉例言之,當設計一套可預測民眾健保需求程度之系統時,如輸入參數僅考量民眾於醫療上的花費,將使僅有可負擔較高醫療費用之民眾被歸類為健保需求程度較高者,從而導致健保制度排擠經濟負擔程度較差之公民,故在設計系統時,應從預先設定之假設事實反面(counter-factual)思考並驗證是否會產生誤差或公平性之問題(例如預先思考並驗證「醫療費用支出較低之民眾是否即可被正確歸類為健保需求度低之民眾」)。惟進行上述驗證需要大量社會資料,因此DeepMind也建議NIST應建立相關機制,使這些社會資料可以被蒐集、使用。 此外,亦有民眾建議管理框架應有明確之衡量方法以及數值指標,以供工程界遵循。同時鑒於人工智慧發展極為快速,未來可能有不同於以往之人工智慧類型出現,故亦建議NIST應思考如何在「建構一套完整且詳細之人工智慧治理框架」與「保持人工智慧治理框架之彈性與靈活性」之間取得平衡。 最後,目前也有許多徵詢意見指出,許多人工智慧治理之目標會相互衝突。舉例言之,當NIST要求人工智慧系統應符合可解釋性,則人工智慧公司勢必需要經常抽取人工智慧系統中之「數據軌跡」(audit logs),惟數據軌跡可能被認為是使用者之個人資料,因此如何平衡或完善不同治理框架下之目標,為未來應持續關注之議題。