韓國特許廳推動「技術公開網路服務」,公開技術達到防禦性功能且促進公眾利用

  韓國特許廳自2000年12月開始提供「技術公開網路服務」,透過此網站服務,研究人員可將其研發的技術公開、並登載在韓國特許廳的技術公開網站,藉以取得具公信力的公開日期。假若網站上公開的技術與先申請專利的其他技術相似,但其公開日期較早,那麼網站上公開的技術會被認為他人申請專利時的先前技術(prior art),他人就無法取得專利權。此一服務的目的在於希望企業或個人的研究開發成果可防止他人以相同或類似的技術申請專利,作為一種防禦手段。另公開的研發成果也可提供公眾免費使用,進而促進整體產業的發展。

  為改善「技術公開網路服務」,增加使用上之便利性,韓國特許廳2011年10月起推出新的「技術公開網路服務」系統,規定必須載明公開的必要記載項目(包括標題、相關領域、目的、技術組成內容),以利其他人得以簡便地了解被公開的技術內容。利用人可到韓國特許廳建置之「專利資訊檢索服務(Korea Intellectual Property Rights Information Service, KIPRIS) 」網站進行檢索,搜尋所需之技術內容。

  研發者可以將自己的發明想法公開,防止他人就同一或類似技術申請專利;同時任何人皆可查詢利用已經公開的技術,避免重複研發,也可讓業界掌握技術發展的最新動向,以促進技術之活用。

相關連結
※ 韓國特許廳推動「技術公開網路服務」,公開技術達到防禦性功能且促進公眾利用, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=5561&no=55&tp=1 (最後瀏覽日:2026/02/14)
引註此篇文章
你可能還會想看
用ChatGPT找法院判決?從Roberto Mata v. Avianca, Inc.案淺析生成式AI之侷限

用ChatGPT找法院判決?從Roberto Mata v. Avianca, Inc.案淺析生成式AI之侷限 資訊工業策進會科技法律研究所 2023年09月08日 生成式AI是透過研究過去資料,以創造新內容和想法的AI技術,其應用領域包括文字、圖像及影音。以ChatGPT為例,OpenAI自2022年11月30日發布ChatGPT後,短短二個月內,全球月均用戶數即達到1億人,無疑成為民眾日常生活中最容易近用的AI科技。 惟,生成式AI大量使用後,其中的問題也逐漸浮現。例如,ChatGPT提供的回答僅是從所學習的資料中統整歸納,無法保證資料的正確性。Roberto Mata v. Avianca, Inc.案即是因律師利用ChatGPT撰寫訴狀,卻未重新審視其所提供判決之正確性,以致後續引發訴狀中所描述的判決不存在爭議。 壹、事件摘要 Roberto Mata v. Avianca, Inc.案[1]中,原告Roberto Mata於2019年8月搭乘哥倫比亞航空從薩爾瓦多飛往紐約,飛行過程中膝蓋遭空服員的推車撞傷,並於2022年2月向法院提起訴訟,要求哥倫比亞航空為空服員的疏失作出賠償;哥倫比亞航空則主張已超過《蒙特婁公約》(Montreal Convention)第35條所訂之航空器抵達日起兩年內向法院提出損害賠償之請求時效。 R然而,法院審理過程中發現原告訴狀內引用之六個判決無法從判決系統中查詢,進而質疑判決之真實性。原告律師Steven A. Schwartz因而坦承訴狀中引用的六個判決是ChatGPT所提供,並宣稱針對ChatGPT所提供的判決,曾多次向ChatGPT確認該判決之正確性[2]。 貳、生成式AI應用之潛在風險 雖然運用生成式AI技術並結合自身專業知識執行特定任務,可能有助於提升效率,惟,從前述Roberto Mata v. Avianca, Inc.案亦可看出,依目前生成式AI技術之發展,仍可能產生資訊正確性疑慮。以下彙整生成式AI應用之8大潛在風險[3]: 一、能源使用及對環境危害 相較於傳統機器學習,生成式AI模型訓練將耗費更多運算資源與能源。根據波士頓大學電腦科學系Kate Saenko副教授表示,OpenAI的GPT-3模型擁有1,750億個參數,約會消耗1,287兆瓦/時的電力,並排放552噸二氧化碳。亦即,每當向生成式AI下一個指令,其所消耗的能源量相較於一般搜尋引擎將可能高出4至5倍[4]。 二、能力超出預期(Capability Overhang) 運算系統的黑盒子可能發展出超乎開發人員或使用者想像的隱藏功能,此發展將會對人類帶來新的助力還是成為危險的阻力,則會隨著使用者之間的相互作用而定。 三、輸出結果有偏見 生成式AI通常是利用公開資料進行訓練,若輸入資料在訓練時未受監督,而帶有真實世界既存的刻板印象(如語言、種族、性別、性取向、能力、文化等),據此建立之AI模型輸出結果可能帶有偏見。 四、智慧財產權疑慮 生成式AI進行模型訓練時,需仰賴大量網路資料或從其他大型資料庫蒐集訓練資料。然而,若原始資料來源不明確,可能引發取得資料未經同意或違反授權條款之疑慮,導致生成的內容存在侵權風險。 五、缺乏驗證事實功能 生成式AI時常提供看似正確卻與實際情形不符的回覆,若使用者誤信該答案即可能帶來風險。另外,生成式AI屬於持續動態發展的資訊生態系統,當產出結果有偏誤時,若沒有大規模的人為干預恐難以有效解決此問題。 六、數位犯罪增加與資安攻擊 過去由人工產製的釣魚郵件或網站可能受限於技術限制而容易被識破,然而,生成式AI能夠快速建立具高度說服力的各種擬真資料,降低詐騙的進入門檻。又,駭客亦有可能在不熟悉技術的情況下,利用AI進一步找出資安弱點或攻擊方法,增加防禦難度。 七、敏感資料外洩 使用雲端服務提供商所建立的生成式AI時,由於輸入的資料存儲於外部伺服器,若要追蹤或刪除有一定難度,若遭有心人士利用而導致濫用、攻擊或竄改,將可能產生資料外洩的風險。 八、影子AI(Shadow AI) 影子AI係指開發者未知或無法控制之AI使用情境。隨著AI模型複雜性增加,若開發人員與使用者未進行充分溝通,或使用者在未經充分指導下使用 AI 工具,將可能產生無法預期之風險。 參、事件評析 在Roberto Mata v. Avianca, Inc.案中,法院關注的焦點在於律師的行為,而非對AI技術使用的批判。法院認為,隨著技術的進步,利用可信賴的AI工具作為協助用途並無不當,惟,律師應踐行其專業素養,確保所提交文件之正確性[5]。 當AI科技發展逐漸朝向自主與獨立的方向前進,仍需注意生成式AI使用上之侷限。當個人在使用生成式AI時,需具備獨立思考判斷的能力,並驗證產出結果之正確性,不宜全盤接受生成式AI提供之回答。針對企業或具高度專業領域人士使用生成式AI時,除確認結果正確性外,更需注意資料保護及治理議題,例如建立AI工具合理使用情境及加強員工使用相關工具之教育訓練。在成本能負擔的情況下,可選擇透過企業內部的基礎設施訓練AI模型,或是在訓練模型前確保敏感資料已經加密或匿名。並應注意自身行業領域相關法規之更新或頒布,以適時調整資料使用之方式。 雖目前生成式AI仍有其使用之侷限,仍應抱持開放的態度,在技術使用與風險預防之間取得平衡,以能夠在技術發展的同時,更好地學習新興科技工具之使用。 [1]Mata v. Avianca, Inc., 1:22-cv-01461, (S.D.N.Y.). [2]Benjamin Weiser, Here’s What Happens When Your Lawyer Uses ChatGPT, The New York Times, May 27, 2023, https://www.nytimes.com/2023/05/27/nyregion/avianca-airline-lawsuit-chatgpt.html (last visited Aug. 4, 2023). [3]Boston Consulting Group [BCG], The CEO’s Roadmap on Generative AI (Mar. 2023), https://media-publications.bcg.com/BCG-Executive-Perspectives-CEOs-Roadmap-on-Generative-AI.pdf (last visited Aug. 29, 2023). [4]Kate Saenko, Is generative AI bad for the environment? A computer scientist explains the carbon footprint of ChatGPT and its cousins, The Conversation (May 23, 2023.), https://theconversation.com/is-generative-ai-bad-for-the-environment-a-computer-scientist-explains-the-carbon-footprint-of-chatgpt-and-its-cousins-204096 (last visited Sep. 7, 2023). [5]Robert Lufrano, ChatGPT and the Limits of AI in Legal Research, National Law Review, Volume XIII, Number 195 (Mar. 2023), https://www.natlawreview.com/article/chatgpt-and-limits-ai-legal-research (last visited Aug. 29, 2023).

日本發布以人為本AI社會原則

  日本內閣於2018年6月15日決議組成跨部會之統合創新戰略推進會議,並於2019年3月29日發布AI戰略,其中的倫理面向為以人為本之AI社會原則(下稱AI社會原則),希冀藉有效安全的活用AI,推動「AI-Ready 社會」,以實現兼顧經濟發展與解決社會課題的「Society5.0」為最終目標。   為構築妥善應用人工智慧的社會,AI社會原則主張應尊重之價值理念如下: (一) 尊重人類尊嚴的社會:AI應作為能激發人類發揮多樣能力和創造力的工具。 (二) 多元性和包容性的社會(Diversity & Inclusion):開發運用AI以共創多元幸福社會。 (三) 永續性的社會(Sustainability):透過AI強化科技,以創造能持續解決社會差距與環境問題的社會。   而AI社會原則核心內容為: (一) 以人為本:AI使用不得違反憲法或國際保障之基本人權。 (二) AI知識(literacy)教育:提供必要的教育機會。 (三) 保護隱私:個人資料的流通及應用應妥適處理。 (四) 安全確保:把握風險與利益間之平衡,從整體提高社會安全性。 (五) 公平競爭確保:防止AI資源過度集中。 (六) 公平性、說明責任及透明性任。 (七) 創新:人才與研究皆須國際多樣化,並且建構產官學研AI合作平台。

眾議員提出新法以因應數位科技轉換產生的權利保護問題

為避免數位科技轉換所可能發生的權利保護缺口,美國眾議院司法委員會主席 James Sensenbrenner Jr. 與議員 John Conyers 於本月 16 日共同提出了「 Digital Transition Content Security Act 」( DTCSA , H.R.4569 ),要求業者應在次世代的數位影像製品中加入反盜版技術。該草案的提出,無疑地為飽受盜版所苦的好萊塢注入一劑強心針。   原本可受到著作權法保護的數位內容,一旦由數位轉換為類比( analog )形式,再由類比轉換回數位後,其品質上雖稍受影響,但此一新的數位內容即不再受著作權法的保障,眾議員 John Conyers 將之稱為「類比漏洞」( analog hole ), DTCSA 的提出即在於因應此一棘手問題。未來草案若能順利通過,除非業者能提出有效阻斷違法複製的策略,否則在一年緩衝期過後,業者凡有製造或販售可將類比影像訊號轉換為數位訊號之設備,均將被宣布為違法。可能因此受到影響者,包括了電腦調頻器( PC-based tuner )與數位錄影機( digital video recorder )等。   全美電影協會( MPAA )對此新法大表歡迎,主席 Dan Glickman 認為 DTCSA 的提出,不僅保護了權利人,同時也將提供消費者更多的選擇。但另一方面,在 DTCSA 賦予商業部( Commerce Department )更大的權力以監視家電製造業者之下,草案無可避免地將遭致來自業者一方強大的反彈力量。

日本促進產學合作相關計畫簡介

  日本在促進產學合作,除了A-step計劃外,亦成立了創新中繼站構築援助事業(Support Program for Forming Innovation Hub)與創新中心(COI)等。   創新中繼站構築援助事業,由JST協助國立研發法人推動改革,以強化法人之效能,並做為大學與企業之中繼站,大學主司研究,企業則負責產業化階段,中間點則由JST與國立研發法人一同合作。JST負責召集人才、評定人才並進行創業援助、技術調查與分析。國立研發法人則提供人才培育及交流所需之資源(例如:機具設備的整修與提供,推動研究開發等等)。   創新中心(COI)則是政府預測未來10年之社會變遷及人口結構,再根據未來社會可能之需要,以建立理想社會為目標,通常進行具有高難度、高風險研發之創新中心。目前日本有18個創新中心分佈全國各地,由國家指定企業與大學共同進行,但是研究負責人只能是大學。

TOP