為妥適管理中國幹細胞醫療產業,中國衛生部下令停止未經許可之幹細胞臨床研究和應用行為,並展開為期一年的幹細胞臨床研究和應用規範整頓工作。此期間分為「自查自糾」、「重新認證」和「規範管理」等階段。中國衛生部及國家食品藥品監督管理局(以下簡稱食品藥品監管局)辦公室於今年(2012年)1月6日發布一份名為《關於發展幹細胞臨床研究和應用自查自糾工作的通知》之部門規章,明白揭示於「自查自糾」階段各省、自治區及直轄市之衛生廳局及食品藥品監督管理局應如何辦理。
該通知中要求全國各級各類從事幹細胞臨床研究及應用之醫療機構及相關研究單位應依照《藥物臨床實驗質量管理規範》及《醫療技術臨床應用管理辦法》之規範進行自查自糾工作,如實總結並填寫幹細胞臨床研究和應用自查情況調查表,報告已完成或刻正進行之幹細胞臨床研究和應用活動;另外一方面,中國衛生部及食品藥品監管局及各省、自治區及直轄市將分別組成工作領導小組及工作組,制定自查自糾工作方案。針對尚未經批准之幹細胞臨床研究和應用,於通知文件中明白揭示應予停止;已經批准者,亦不得任意變更臨床試驗方案,或自行變更為醫療機構收費項目。值得注意者,為整頓對幹細胞臨床研究及應用之管理,並研擬符合國內需求之管理機制,直至今年7月1日前,相關主管機關將不受理任何申報項目。
中國截至目前為止,尚未針對幹細胞技術之臨床實驗或應用做成法規或政策,僅適用一般性藥品法規,相較於國際間先進國家屬相對鬆散。中國衛生部及食品藥品監管局於近日做成之通知文件顯示了中國政府開始對於幹細胞臨床實驗及應用之規範面向有所重視,針對其後續衍生之管理規範值得我們持續追蹤關切。
本文為「經濟部產業技術司科技專案成果」
延續過去兩年針對全國寬頻網路服務進行檢視,FCC在2013年2月公布第三次「美國寬頻測量報告」(Measuring Broadband America)。這份報告有別於過去,將受測技術從DSL、有線電視與光纖,涵蓋至衛星寬頻,使資訊更加多元。此外,網路服務供應商(Internet Service Provider,ISP)在今年尖峰時段(工作日晚間7點至9點)提供寬頻實際速度與網速的契合率達97%,而較2011、2012年進步,因此,這份報告的另一個重點,便是提出寬頻速度與廣告相符的三大關鍵: 1.ISP業者盡力改善網路效能(Network Performance),而非調降牌告價(Speed Tiers )。 2.民眾接納更快速的網路意願,更甚過往。FCC指出,消費者訂閱網速的層級,逐漸從每秒14.3Mbps ,發展至15.6 Mbps。至於,使用網速低於1Mbps、或是1Mbps到3Mbps的民眾,近年也逐步採用更高速的網路。 3.衛星寬頻的進步:雖然,衛星技術在傳輸上仍有延遲的缺陷,但是,有近90%的民眾於尖峰時段,得到超過業者寬頻廣告速度的140%(業者宣稱具有12Mbps),使消費者感受不出網路尖峰期。 為使2015年實現50Mbps寬頻網路具有1億家戶可連結,美國逐步發展國家寬頻計畫(National Broadband Plan,NBP)。FCC避免寬頻廣告速度與實際速度不符影響NBP發展,未來將要求ISP業者對於網路牌告負起責任(Accountability),藉此增加市場競爭性與提高資訊透明度。以「美國寬頻測量報告」為例,藉由委員會、產業與其他利益相關人合作的方式,促進資訊的透明,使消費者在取得訊息後,有能力做出正確的決定,便是一種提高透明度的方式。 雖然,FCC認為寬頻網路進步與民眾採納較高速的網路,對於市場發展是一項利多,但部分輿論卻認為這與2011年12月31日FCC網路接取報告(Internet Access Report)結論相距甚遠。根據報告顯示,美國有高達42%的民眾下載速度不到3 Mbps、上傳速度不到769 kbps,而這與「美國寬頻測量報告」結果,確實大相逕庭。無論如何,可以窺見FCC視民眾使用意願與網路基礎建設同等重要,因此,如何增加消費者選擇較高速的網路,將是市場未來發展的關鍵。
通用人工智慧的透明揭露標準--歐盟通用人工智慧模型實踐準則「透明度 (Transparency)」章通用人工智慧的透明揭露標準--歐盟通用人工智慧模型實踐準則「透明度 (Transparency)」章 資訊工業策進會科技法律研究所 2025年08月06日 歐盟人工智慧辦公室(The European AI Office,以下簡稱AIO) 於2025年7月10日提出《人工智慧法案》(AI Act, 以下簡稱AIA法案)關於通用型人工智慧實作的準則[1] (Code of Practice for General-Purpose AI Models,以下簡稱「GPAI實踐準則」),並於其中「透明度 (Transparency)」章節[2],針對歐盟AIA法案第53條第1項(a)、(b)款要求GPAI模型的提供者必須準備並提供給下游的系統整合者 (integrator) 或部署者 (deployer) 足夠的資訊的義務,提出模型文件(Model Documentation)標準與格式,協助GPAI模型提供者制定並更新。 壹、事件摘要 歐盟為確保GPAI模型提供者遵循其AI法案下的義務,並使AIO能夠評估選擇依賴本守則以展現其AI法案義務合規性的通用人工智慧模型提供者之合規情況,提出GPAI實踐準則。當GPAI模型提供者有意將其模型整合至其AI系統的提供者(以下稱「下游提供者」)及應向AIO提供相關資訊,其應依透明度章節要求措施(詳下述)提出符合內容、項目要求的模型文件,並予公開揭露且確保已記錄資訊的品質、安全性及完整性 (integrity)。 由於GPAI模型提供者在AI價值鏈 (AI value chain) 中具有特殊角色和責任,其所提供的模型可能構成一系列下游AI系統的基礎,這些系統通常由需要充分了解模型及其能力的下游提供者提供,以便將此類模型整合至其產品中並履行其AIA法案下的義務。而相關資訊的提供目的,同時也在於讓AIO及國家主管機關履行其AI法案職責,特別是高風險AI的評估。 AIO指出完整填寫與定期更新模型文件,是履行AIA法案第53條義務的關鍵步驟。GPAI模型提供者應建立適當的內部程序,確保資訊的準確性、時效性及安全性。模型文件所含資訊的相關變更,包括同一模型的更新版本,同時保留模型文件的先前版本,期間至模型投放市場後10年結束。 貳、重點說明 一、制定並更新模型文件(措施1.1) 透明度 (Transparency)章節提供模型文件的標準表格,做為GPAI實踐準則透明度章節的核心工具,協助GPAI模型提供者有系統性的整理並提供AIA法案所要求的各項資訊。表格設計考量了不同利害關係人的資訊需求,確保在保護商業機密的同時,滿足監管透明度的要求。 前揭記錄資訊依其應提供對象不同,各欄位已有標示區分該欄資訊係用於AI辦公室 (AIO)、國家主管機關 (NCAs) 或下游提供者 (DPs)者。適用於下游提供者的資訊,GPAI模型提供者應主動提供(公開揭露),其他則於被請求時始須提供(予AIO或NCAs)。 除基本的文件最後更新日期與版本資訊外,應提供的資訊分為八大項,內容應包括: (一)、一般資訊General information 1.模型提供者法律名稱(Legal name) 2.模型名稱(Model name):模型的唯一識別碼(例如 Llama 3.1-405B),包括模型集合的識別碼(如適用),以及模型文件涵蓋之相關模型公開版本的名稱清單。 3.模型真實性(Model authenticity):提供明確的資訊例如安全雜湊或URL端點,來幫助使用者確認這個模型的來源 (Provenance)、是否真實性未被更動 (Authenticity)。 4.首次發布日(Release date)與首次投放歐盟市場的日期(Union market release date)。 5.模型依賴(Model dependencies):若模型是對一個或多個先前投放市場的GPAI模型進行修改或微調的結果,須列出該等模型的名稱(及相關版本,如有多個版本投放市場)。 (二)、模型屬性(Model properties) 1.Model architecture 模型架構:模型架構的一般描述,例如轉換器架構 (transformer architecture)。 2.Design specifications of the model 模型設計規格:模型主要設計規格的一般描述,包括理由及所作假設。 3.輸出/入的模式與其最大值(maximum size):說明係文字、影像、音訊或視訊模式與其最大的輸出/入的大小。 4.模型總參數量(model size)與其範圍(Parameter range):提供模模型參數總數,記錄至少兩個有效數字,例如 7.3*10^10 參數,並勾選參數(大小)所在範圍的選項,例如:☐>1T。 (三)、發佈途徑與授權方式(Methods of distribution and licenses) 1.發佈途徑Distribution channels:列舉在歐盟市場上使用模型的採用法,包括API、軟體套裝或開源倉庫。 2.授權條款License:附上授權條款鏈結或在要求時提供副本;說明授權類型如: 開放授權、限制性授權、專有授權;列出尚有提供哪些相關資源(如訓練資料、程式碼)與其存取方式、使用授權。 (四)、模型的使用(Use) 1.可接受的使用政策Acceptable Use Policy:附上可接受使用政策連結或副本或註明無政策。 2.預期用途或限制用途Intended uses:例如生產力提升、翻譯、創意內容生成、資料分析、資料視覺化、程式設計協助、排程、客戶支援、各種自然語言任務等或限制及/或禁止的用途。 3.可整合AI系統之類型Type and nature of AI systems:例如可能包括自主系統、對話助理、決策支援系統、創意AI系統、預測系統、網路安全、監控或人機協作。 4.模型整合技術方式Technical means for integration:例如使用說明、基礎設施、工具)的一般描述。 5.所需軟硬體資源Required hardware與software:使用模型所需任何軟硬體(包括版本)的描述,若不適用則填入「NA」。 (五)、訓練過程(Training process) 1.訓練過程設計規格(Design specifications of the training process):訓練過程所涉主要步驟或階段的一般描述,包括訓練方法論及技術、主要設計選擇、所作假設及模型設計最佳化目標,以及不同參數的相關性(如適用)。例如:「模型在人類偏好資料集上進行10個輪次的後訓練,以使模型與人類價值觀一致,並使其在回應使用者提示時更有用」。 2.設計決策理由(Decision rationale):如何及為何在模型訓練中做出關鍵設計選擇的描述。 (六)、用於訓練、測試及驗證的資料資訊(Information on the data used for training, testing, and validation) 1.資料類型樣態Data type/modality:勾選樣態包括文字、影像、音訊、視訊或說明有其他模態。 2.資料來源Data provenance:勾選來源包括網路爬蟲、從第三方取得的私人非公開資料集、使用者資料、公開資料集、透過其他方式收集的資料、非公開合成(Synthetic )資料等。 3.資料取得與選取方式(How data was obtained):取得及選擇訓練、測試及驗證資料使用方法的描述,包括用於註釋資料的方法及資源,以及用於生成合成資料的模型及方法。從第三方取得的資料,如果權利取得方式未在訓練資料公開摘要中披露,應描述該方式。 4.資料點數量Number of data points:說明訓練、測試及驗證資料的大小(資料點數量),連同資料點單位的定義(例如代幣或文件、影像、視訊小時或幀)。 5.資料範疇與特性(Scope and characteristics):指訓練、測試及驗證資料範圍及主要特徵的一般描述,如領域(例如醫療保健、科學、法律等)、地理(例如全球、限於特定區域等)、語言、模式涵蓋範圍。 6.資料清理處理方法(Data curation methodologies):指將獲取的資料轉換為模型訓練、測試及驗證資料所涉及的資料處理一般描述,如清理(例如過濾不相關內容如廣告)、資料擴增。 7.不當資料檢測措施(Measures for unsuitability):在資料獲取或處理中實施的任何方法描述(如有),以偵測考慮模型預期用途的不適當資料源,包括但不限於非法內容、兒童性虐待材料 (CSAM)、非同意親密影像 (NCII),以及導致非法處理的個人資料。 8.可識別偏誤檢測措施(Measures to detect identifiable biases):描述所採取的偵測與矯正訓練資料存在偏誤的方法。 (七)、訓練期間的計算資源(Computational resources (during training)) 1.訓練時間(Training time):所測量期間及其時間的描述。 2.訓練使用的計算量(Amount of computation used for training):說明訓練使用的測量或估計計算量,以運算表示並記錄至其數量級(例如 10^24 浮點運算)。 3.測量方法論(Measurement methodology):描述用於測量或估計訓練使用計算量的方法。 (八)、訓練及推論的能源消耗(Energy consumption (during training and inference)) 1.訓練耗能(Amount of energy used for training)及其計量方法:說明訓練使用的測量或估計能源量,以百萬瓦時表示(例如 1.0x10^2 百萬瓦時)。若模型能源消耗未知,可基於所使用計算資源的資訊估計能源消耗。若因缺乏計算或硬體提供者的關鍵資訊而無法估計訓練使用能源量,提供者應披露所缺乏的資訊類型。 2.推論運算耗能的計算基準 (Benchmarked amount of computation used for inference1)及其方法:以浮點運算表示方式(例如 5.1x10^17 浮點運算)說明推論運算的基準計算量,並提供計算任務描述(例如生成100000個代幣Token)及用於測量或估計的硬體(例如 64個Nvidia A100)。 二、提供GPAI模型相關資訊(措施1.2) 通用人工智慧模型投放市場時,應透過其網站或若無網站則透過其他適當方式,公開揭露聯絡資訊,供AIO及下游提供者請求取得模型文件中所含的相關資訊或其他必要資訊,以其最新形式提供所請求的資訊。 於下游提供者請求時,GPAI模型提供者應向下游提供者提供最新模型文件中適用於下游提供者的資訊,在不影響智慧財產權及機密商業的前提下,對使其充分了解GPAI模型的能力及限制,並使該等下游提供者能夠遵循其AIA法案義務。資訊應在合理時間內提供,除特殊情況外不得超過收到請求後14日。且該資訊的部分內容可能也需要以摘要形式,作為GPAI模型提供者根據AIA法案第53條第1項(d)款必須公開提供的訓練內容摘要 (training content summary) 的一部分。 三、確保資訊品質、完整性及安全性(措施1.3) GPAI模型提供者應確保資訊的品質及完整性獲得控制,並保留控制證據以供證明遵循AIA法案,且防止證據被非預期的變更 (unintended alterations)。在制定、更新及控制資訊及記錄的品質與安全性時,宜遵循既定協議 (established protocols) 及技術標準 (technical standards)。 參、事件評析 一、所要求之資訊完整、格式標準清楚 歐盟AGPAI實踐準則」的「透明度 (Transparency)」提供模型文件的標準表格,做為GPAI實踐準則透明度章節的核心工具,從名稱、屬性、功能等最基本的模型資料,到所需軟硬體、使用政策、散佈管道、訓練資料來源、演算法設計,甚至運算與能源消秏等,構面完整且均有欄位說明,而且部分欄位直接提供選項供勾選,對於GPAI模型提供者提供了簡明容易的AIA法案資訊要求合規做法。 二、表格設計考量不同利害關係人的資訊需求 GPAI實踐準則透明度章節雖然主要目的是為GPAI模型提供者對由需要充分了解模型及其能力的下游提供者提供資訊,以便其在產品履行AIA法案下的義務。但相關資訊的提供目的,同時也在於讓AIO及國家主管機關履行其AI法案職責,特別是高風險AI的評估。因此,表格的資訊標示區分該欄資訊係用於AI辦公室 (AIO)、國家主管機關 (NCAs) 或下游提供者 (DPs)者,例如模型的訓練、資料清理處理方法、不當內容的檢測、測試及驗證的資料來源、訓練與運算的能秏、就多屬AIO、NCAs有要求時始須提供的資料,無須主動公開也兼顧及GPAI模型提供者的商業機密保護。 三、配套要求公開並確保資訊品質 該準則除要求GPAI模型提供者應記錄模型文件,並要求於網站等適當地,公開提供下游提供者請求的最新的資訊。而且應在不影響智慧財產權及機密商業的前提下,提供其他對使其充分了解GPAI模型的能力及限制的資訊。同時,為確保資訊的品質及完整性獲得控制,該準則亦明示不僅應落實且應保留證據,以防止資訊被非預期的變更。 四、以透明機制落實我國AI基本法草案的原則 我國日前已由國科會公告人工智慧基本草案,草案揭示「隱私保護與資料治理」、「妥善保護個人資料隱私」、「資安與安全 」、「透明與可解釋 」、「公平與不歧視」、「問責」原則。GPAI實踐準則透明度章節,已提供一個重要的啟示—透過AI風險評測機制,即可推動GPAI模型資訊的揭露,對相關資訊包括訓練資料來源、不當內容防止採取做一定程度的揭露要求。 透過相關資訊揭露的要求,即可一定程度促使AI開發提供者評估認知風險,同時採取降低訓練資料、生成結果侵權或不正確的措施。即便在各領域作用法尚未能建立落實配套要求,透過通過評測的正面效益,運用AI風險評測機制的資訊提供要求,前揭草案揭示的隱私、著作、安全、問責等原則,將可以立即可獲得一定程度的實質落實,緩解各界對於AI侵權、安全性的疑慮。 本文為資策會科法所創智中心完成之著作,非經同意或授權,不得為轉載、公開播送、公開傳輸、改作或重製等利用行為。 本文同步刊登於TIPS網站(https://www.tips.org.tw) [1]The European AI Office, The General-Purpose AI Code of Practice, https://digital-strategy.ec.europa.eu/en/policies/contents-code-gpai 。(最後閱覽日:2025/07/30) [2]The European AI Office, Code of Practice for General-Purpose AI Models–Transparency Chapter, https://ec.europa.eu/newsroom/dae/redirection/document/118120 。(最後閱覽日:2025/07/30)
國際可再生能源組織發布2021年約旦可再生能源進度評估報告2020年7月,約旦能源與礦產資源部發佈「約旦能源綜合戰略(2020-2030)」,主要著重於下列三點:一、提升再生能源發電比例,降低能源進口量。將本地能源發電比例提高,同時降低石油衍生品於能源結構和發電總量中之比例。二、暫停核電項目計畫,未來約旦將不採用傳統來源生產更多之電力。三、降低碳排放量。 而在2021年2月時,國際可再生能源組織(IRENA)與約旦能源與礦產資源部透過視訊會議的討論結果,共同發布一份約旦可再生能源進度評估報告,指出約旦的可再生能源電量自2014年至2020年間,由幾近為零,增長約20%。 上開結果可能與約旦能源與礦產資源部重視太陽光電(PV)和風力發電的政策有關,包括整合產業發展的各種有利條件,如當地產業發展及所需之技術,以使收益最大化。此外,為使未來可再生能源更加增長,同時為了因應電網基礎設施(the grid infrastructure)的發展進度與可再生能源發展的進步不同,創造能源最終用途的需求及使其盡早電氣化,將成為未來政策上最重要的方向之一。
韓國公平交易委員會推動制定《平臺競爭促進法》韓國公平交易委員會(Fair Trade Commission, FTC)於2023年12月19日宣布將制訂《平臺競爭促進法》(Platform Competition Promotion Act, PCPA),針對市場中大型線上平臺業者,提前認定為具有市場主導地位,禁止提供優惠待遇(preferential treatment)及搭售(tie-sale)等不公平競爭行為,保護小型企業及避免消費者受到大型線上平臺業者壟斷市場的影響。 《平臺競爭促進法》將透過營業收入、使用者數量、市場份額及市場參進障礙等特定條件,認定平臺業者是否具有市場主導地位,被指定具有主導地位的業者則會被禁止從事以下行為:(1)自我偏好行為,禁止平臺業者在平臺上以較競爭者更有利之方式,曝光其本身販售的產品;(2)搭售行為,迫使平臺使用者在購買平臺所提供的產品或服務時,必須同時購買其他產品;(3)限制多棲(multi-homing)或禁止使用者使用其他平臺;(4)要求比其他平臺更優惠的交易條件。 依據韓國《公平交易法》現行法規規定,企業從事不公平競爭行為,最多僅能處以其營業額6%的罰鍰;若於《平臺競爭促進法》制定後,被認定具有市場主導地位的平臺業者從事不公平競爭行為時,將依《平臺競爭促進法》最高可處其營業額10%之罰鍰。平臺業者被委員會指定為具市場主導地位的平臺時,業者仍可在(1)指定前提交意見;(2)指定後提出異議,或以(3)提出行政訴訟等方式保障其權利。 我國公平交易委員會於2022年12月提出數位經濟競爭政策白皮書,內容包含數位經濟下可能面臨的議題及執法立場與方向。近來韓國科技產業與社會經濟發展屢次成為我國相關產業比較對象,未來可持續關注韓國對於跨領域科技產業影響市場公平競爭之治理發展,作為我國因應數位經濟競爭法相關議題之參考基礎。