Google公司為強化專利組合,再下一步棋

  谷歌公司(下簡稱Google)已經證實收購來自IBM公司共217篇專利;其中188篇專利為IBM已取得之專利,29篇專利為IBM公司申請中的專利。但Google拒絕透露收購金額。

  這些專利涵蓋了許多不同的技術,主要的專利是與資料處理有關,例如電子郵件處理、線上日曆,以及在不同裝置間轉換web apps等功能。其中一篇專利預期用以提升Google的社群網路(Google+)之搜尋功能。

  其實從去年開始,Google已經收購了來自IBM公司總共約2000篇的專利,這些專利內容與手機軟體、電腦的硬體設備,以及處理器有關。此外,Google去年也以鉅額收購Motorola公司,背後一個很大的原因可能是跟Motorola所擁有的2萬多篇專利有關。

  目前許多科技龍頭公司,已有例行性地藉由採取專利訴訟以取得市場地位的趨勢。例如Apple已指控包括HTC等智慧型手機供應商,因使用Google所擁有的Android手機操作系統,而涉嫌侵害Apple的諸篇專利;在與Apple的爭訟過程中,HTC獲得來自Google收購Motorola後所獲得之專利。

  Google的執行長佩吉(Larry Page)在宣布收購Motorola時曾經表示,藉由收購Motorola可強化Google的專利組合(patent portfolio),協助Google公司對抗來自Apple或其他公司的競爭威脅。

  Google公司透過持續不斷地強化專利組合,拓展專利領域,企圖在這些因專利涉訟的智慧型手機市場中,穩固其市場霸主地位。

相關連結
※ Google公司為強化專利組合,再下一步棋, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=5617&no=57&tp=1 (最後瀏覽日:2026/02/21)
引註此篇文章
你可能還會想看
澳洲隱私保護辦公室檢討實施「選擇退出機制」後對「我的健康紀錄系統」之影響

  澳洲隱私保護辦公室(Office of the Australian Information Commissioner,OAIC)在2019年11月發布的「2018-2019年度健康數位資料報告」(Annual Report of the Australian Information Commissioner’s activities in relation to digital health 2018–19),主要說明澳洲政府實施「選擇退出機制」(opt-out)後,對「我的健康紀錄系統」(My Health Record System)(下稱系統)發生的影響,以及有將近1成的國民大量選擇退出系統,造成系統的醫療健康資料統計困難之檢討。   OAIC認為會發生國民大量選擇退出系統的原因,主要是不信任政府對系統資料保護及不清楚系統使用功能有關,因此提出年度報告,內容如下: 一、改善民眾對醫療資料保護的不信任,例如對醫療業者,開發保護病患隱私的指導教材,防止、外洩即時處理的能力。 二、加強宣傳,例如開發線上資源、影音等,讓民眾在使用系統時能有更清楚認識,且對選擇退出有更明確的認知。 三、改進系統設計,讓民眾能更清楚的看見使用說明,也能隨時掌握在系統上的資訊、設置警報提醒來防止他人侵入、也增加取消功能使資料達到永久刪除的效果。   建置該系統之目的,是因為國家有蒐集與使用國民的醫療健康資料需求,國民也能使用系統查看醫療紀錄、藥物過敏紀錄、曾使用與正在使用的藥物、血液檢查等;醫療人員也能透過醫療資料之電子化,減少重複及不必要的醫療檢查、對症下藥、避免因過敏引起的反應等,將醫療資源做有效的運用。   系統建置是依據「我的健康紀錄法」(My Health Records Act 2012)第三章第一節註冊規定,要將國民的醫療健康資料納入系統,但不願意加入者,得選擇退出系統。而澳洲政府依據此法訂定選擇退出機制,2018年7月正式實施,要求全民強制加入系統,同時開放選擇退出機制,讓不願意加入系統的國民能選擇退出系統;選擇退出機制截止日期原先在2018年10月中旬,但在國民大量反應下,澳洲政府決定延至2019年1月底;在選擇退出機制的實施截止後,OAIC在2019年11月對選擇退出機制做出檢討報告,期望能透過檢討報告提出的建議來增強民眾對系統的信任與促進系統使用率。

美國專利標示不實之罰金計算

  美國聯邦巡迴上訴法院在2009年底於The Forest Group Inc. v. Bon Tool Co. 一案中將美國專利法35 U.S.C. § 292中關於不實專利標示(false patent marking)的懲罰金計算方式認定為罰金之計算是以每一個標示錯誤專利資訊的產品為基礎。美國專利法35 U.S.C. § 292中要求法院對專利資訊標示不實或錯誤之產品或包裝處以最高美金$500的罰金。在此案之前,許多地方法院將35 U.S.C. § 292解釋為罰金之計算是以每一次被告”決定”將產品標示不實專利資訊為基礎 (single penalty for each “decision” to falsely mark products),不論此決定是包含一個或一整批產品。在本案中,聯邦巡迴上訴法院同意地方法院的看法認定被告Forest Group意圖藉不實專利標示企圖欺騙大眾但撤銷地方法院將罰金定為$500之判定,而將目前專利法35 U.S.C. § 292 解釋為罰金是以”每一個”標示錯誤專利資訊的產品為基礎 (penalty for false marking on a per article basis)。   為了防範日後因此案罰金計算方式而造成所謂”標示流氓”(marking trolls) 之興起,聯邦法院於其判決中特別說明其解釋並非要求法院必須將每一標示錯誤專利資訊的產品處以$500美元的罰金。因法條中之罰金是以美金$500為上限,法院有權利權衡各案例背景決定罰款金額。例如,針對大量製造但價錢低廉的產品, 法院可對每一個產品處以極少的罰金。   The Forest Group 一案是美國聯邦巡迴上訴法院第一次針對不實專利標示之罰金提出解釋,直得關注其後續引發反應。廠商也應重新檢視其產品專利標示是否有不實或錯誤之狀況以避免被控標示不實專利資訊而被處以罰款。

歐洲專利局發布人工智慧與機器學習專利審查指南正式生效

  歐洲專利局(European Patent Office, 下稱EPO)於2018年11月1日發佈新版專利審查指南已正式生效。此次新版的焦點為Part G, Chapter II, 3.3.1關於人工智慧(Artificial Intelligence, AI)與機器學習(Machine Learning, ML)的可專利性審查細則。   在新版審查指南Part G, Chapter II, 3.3中指出數學方法本身為法定不予專利事項,然而人工智慧和機器學習是利用運算模型和演算法來進行分類、聚類、迴歸、降維等發明,例如:神經網路、遺傳演算法、支援向量機(Support Vector Machines, SVM)、K-Means演算法、核迴歸和判別分析,不論它們是否能夠藉由數據加以訓練,此類運算模型和演算法本身,因具有抽象的數學性質而不具專利適格性。   其中,EPO亦針對人工智慧和機器學習相關應用舉例下列特殊情形,說明可否具備發明技術特徵:   (一)可能具技術性 在心臟監測儀器運用神經網路辨別異常心跳,此種技術為具有技術貢獻。 基於低階特徵(例如:影像邊緣、像素數值)的數位影像、影片、音頻或語言訊號分類,屬於分類演算法的技術應用。   (二)可能不具技術性 根據文字內容進行分類,本身不具技術目的,而僅是語言學的目的(T 1358/09) 對抽象數據或電信網路數據紀錄進行分類,但未說明所產生分類的技術用途,亦被認定本身不具技術目的,即使該分類演算法的數據價值高(例如:穩健性)(T 1784/06)。   在新版審查指南中亦指出,當分類方法用於技術目的,其產生之訓練集(training set)和訓練分類器(training the classifier)的步驟,則能被視為發明的技術特徵。   近年來,人工智慧技術的應用分佈在我們的生活中,無論是自駕車、新藥開發、語音辨識、醫療診斷等,隨著人工智慧和機器學習技術快速發展,新版的審查指南將為此技術訂定可專利性標準,EPO未來要如何評判人工智慧和機器學習相關技術,將可透過申請案之審查結果持續進行關注。 「本文同步刊登於TIPS網站(https://www.tips.org.tw )」

Web2.0 網站平台管理之法制議題研析-以網路實名制與揭露使用者身份

TOP