「合成資料」(synthetic data)的出現,是為了保護原始資料所可能帶有的隱私資料或機敏資料,或是因法規或現實之限制而無法取得或利用研究所需資料的情況下,透過統計學方法、深度學習、或自然語言處理等方式,讓電腦以「模擬」方式生成研究所需之「合成資料」並進行後續研究跟利用,透過這個方法,資料科學家可以在無侵犯隱私的疑慮下,使合成資料所訓練出來的分類模型(classifiers)不會比原始資料所訓練出來的分類模型差。 在合成資料的生成技術當中,最熱門的研究為運用「生成對抗網路」(Generative Adversarial Network, GAN)形成合成資料(亦有其他生成合成資料之方法),生成對抗網路透過兩組類神經網路「生成網路」(generator)與辨識網路(discriminator)對於不同真偽目標值之反覆交錯訓練之結果,使其中一組類神經網路可生成與原始資料極度近似但又不完全一樣之資料,也就是具高度複雜性與擬真性而可供研究運用之「合成資料」。 英國國防科技實驗室(Defense Science and Technology Laboratory, DSTL)於2020年8月12日發布「合成資料」技術報告,此技術報告為DSTL委託英國航太系統公司(BAE Systems)的應用智慧實驗室(Applied Intelligence Labs, AI Labs)執行「後勤科技調查」(Logistics Technology Investigations, LTI)計畫下「資料科學與分析」主題的工作項目之一,探討在隱私考量下(privacy-preserving)「合成資料」當今技術發展情形,並提供評估技術之標準與方法。 技術報告中指出,資料的種類多元且面向廣泛,包含數字、分類資訊、文字與地理空間資訊等,針對不同資料種類所適用之生成技術均有所不同,也因此對於以監督式學習、非監督式學習或是統計學方法生成之「合成資料」需要採取不同的質化或量化方式進行技術評估;報告指出,目前尚未有一種可通用不同種類資料的合成資料生成技術或技術評估方法,建議應配合研究資料種類選取合適的生成技術與評估方法。
美國的全球食品追溯中心(GFTC)提出食品追溯的「關鍵追蹤事項」及「重點資料元素」架構在近來國際食安問題事件頻傳的氛圍下,如何透過食品供應鏈相關資料的紀錄、串接與分析,達到食品追溯(Food Traceability)目的已成為全球性議題。有鑑於此,美國的全球食品追溯中心(Global Food Traceability Center, GFTC)在跨種類的食品供應鏈中針對數位資料的採集和追蹤,以建立共通架構為目的,提出食品追溯的「關鍵追蹤活動」以及「重點資料元素」,作為監管機構和產業界在建立追溯系統時可依循的標準。 由於現今食品供應系統涉及範圍大部分已擴及全球,其複雜性大幅提升了各國政府對整個食品產業的監管以及促進追溯實踐的困難度。隸屬美國食品科技研究所(IFT)的GFTC於2014年8月19日發表了一篇「食品追溯最佳實踐指南」(A Guidance Document on the Best Practices in Food Traceability)報告,指出當食品相關疫情爆發時進行食品追溯即有全球性的需求;該指南主要以食品安全及追溯相關規範的立法者和食品產業界為對象,針對六大類食品產業-烘焙、奶製品、肉類及家禽、加工食品、農產品和海產類提供一個可茲遵循的追蹤架構。在一條食品供應鏈中,有許多環節是進行追蹤時必要的資訊採集重點,被視為「關鍵追蹤活動」(Critical tracking events, CTEs),而各種「關鍵追蹤活動」的紀錄項目即為「重點資料元素」(Key data elements, KDEs)。 根據該指南所定義的CTEs包含: 1.運輸活動(Transportation events)-食品的外部追蹤,包括「運送活動」(Shipping CTE)和「接收活動」(Receiving CTE),指食品在供應鏈的點跟點之間藉由空運、陸運或船運等物理性的移動。 2.轉換活動(Transformation events)-食品的內部追蹤,連結食品經過各種結合、烹煮、包裝等加工的輸入到輸出過程,包括「轉換輸入活動」(Transformation Input CTE)和「轉換輸出活動」(Transformation Output CTE)。 3.消耗活動(Depletion events)-係將食品從供應鏈上去除的活動。其中,「消費活動」(Consumption CTE),指食品呈現可供顧客消費狀態的活動,例如把新鮮農產品放在零售店供顧客選購;「最終處置活動」(Disposal CTE)指將食品毀棄、無法再作為其他食品的成分或無法再供消費的活動。 而紀錄上述CTEs的KDEs例如各項活動的擁有人、交易對象、日期時間、地點、產品、品質等,應將該指南所列出之各項KDEs理解為紀錄CTEs的最基本項目。目前最大的問題是食品監管的要求和產業界執行可行性間的差距,故如何縮小此差距仍為各國政府當前最大的挑戰。
日本內閣通過AI研發及活用推進法草案日本內閣於2025年2月28日通過並向國會提出《人工智慧相關技術研究開發及活用推進法案》(人工知能関連技術の研究開発及び活用の推進に関する法律案,以下簡稱日本AI法),旨在兼顧促進創新及風險管理,打造日本成為全球最適合AI研發與應用之國家。規範重點如下: 1. 明定政府、研究機構、業者與國民之義務:為確保AI開發與應用符合日本AI法第3條所定之基本原則,同法第4至第9條規定,中央及地方政府應依據基本原則推動AI相關政策,研發法人或其他進行AI相關研發之機構(以下簡稱研究機構)、提供AI產品或服務之業者(以下簡稱AI業者)及國民則有配合及協助施政之義務。 2. 強化政府「司令塔」功能:依據日本AI法第15條及第17至第28條規定,日本內閣下應設置「AI戰略本部」,由首相擔任本部長,負責制定及推動AI基本計畫,統籌推動AI技術開發與應用相關政策,並促進AI人才培育、積極參與國際交流與合作。 3. 政府調查及資訊蒐集機制:為有效掌握AI開發、提供及應用狀況,防止AI應用侵害民眾權益,日本AI法第16條規定政府應蒐集、分析及調查國內外AI技術研發及應用趨勢,並得基於上述結果,對研究機構或AI業者採取指導、建議或提供資料等必要措施。
澳洲正式通過數位身分法案,未來民營企業將協助提供數位身分識別服務澳洲於2024年5月30日正式通過並簽署《2024年數位身分法案》(Digital ID Act 2024)和《2024年數位身分(過渡及相關條文)法案》(Digital ID (Transitional and Consequential Provisions) Act 2024,以下合稱數位身分法案)。數位身分法案將於2024年12月1日開始實施,而相關的支援規範(supporting rule)和資料標準(data standard)也已於同年6月25日完成公眾討論階段。 數位身分法案的實施將分階段進行,澳洲競爭和消費者委員會(Australian Competition and Consumer Commission)被任命為首階段的數位身分主管機關,未來隨著數位身分法案的落實和深化,澳洲政府可能會建立一個更具專業及獨立性的監管機構來負責這項業務。 澳洲將擴展現有的澳洲政府數位身分識別系統(Australian Government Digital ID System, AGDIS),在第一階段myGovID將作為唯一的數位身分識別服務提供給使用者,使其能夠更便利的使用政府線上服務。澳洲政府未來將擴展AGDIS的應用範圍至更多的政府和民營服務,並允許使用者選擇經認證的民營企業來提供數位身分識別服務。 數位身分法案的主要目標包括: 1.為個人提供安全、方便、自願和包容的方式,以在與政府和企業的線上交易中驗證其身分。 2.提供數位身分的識別服務,以幫助各類型的潛在使用者皆可融入數位社會。 3.加強用於驗證個人身分或屬性的個人資訊安全。 4.鼓勵社會使用數位身分識別和線上服務,減少因數位化不足而存在的地理與實體限制及經濟負擔。 5.提升澳洲社會對於數位身分識別服務的信任。 數位身分法案將採取以下措施來達到目標: 1.建立數位身分識別服務提供者的認證機制。 2.向經認證的數位身分識別服務提供更多的隱私保護措施。 3.建立一個安全、易於使用、自願、可訪問、包容和可靠的AGDIS。 4.加強以下三者的監督和管理: (1)數位身分識別服務提供廠商。 (2)AGDIS的使用者。 (3)AGDIS的性能和完整性。 澳洲的數位身分法案嘗試建構一套更加完整且安全的數位身分認證法律規範,並且將這個系統和產業推向整個澳洲社會,由政府促使更多服務提供者和服務使用者加入這個數位生態中,後續可持續關注以作為我國政府攜手民間企業推動國家與社會數位轉型時的參考。