歐盟於去年(2011)3月發布「網路博奕綠皮書(Green paper on on-line gambling)」,針對歐盟在網路博奕所面臨的問題提出解決對策,旨在尋求歐盟境內與網路博奕相關的利益團體支持立法推動。該綠皮書內容,主要包括以下幾項議題:
一、網路博奕服務業者之界定:歐盟內的各成員國間對於網路博奕服務業者的認定,以及發核發執照相關條件仍有分歧,使得部分業者無法在他國營業,故擬透過綠皮書諮詢各國現行制度,以及核發執照的實務,尋求認定服務實體能達一定共識。
二、提升網路博奕的服務:包括更簡易的支付方式(如使用信用卡、電子錢包、現金轉帳、預付卡等),以及提高網路中介服務提供者(ISP或網路資料儲存)的服務品質。
三、公共利益維護:包括消費者保護(如防範賭博成癮),公共秩序維護(防範詐欺、洗錢或其他犯罪)、以及博奕盈餘如何分配在公共利益事項等。
四、取締非法網路博奕服務:由於各成員國對於非法網路博奕業者或因執法不,導致非法的網路博奕服務在歐盟境內仍大行其道。故擬評估成員國執法與跨境合作現況,以及利用網路阻斷非法賭博的成效。
歐盟執委會在綠皮書公布後,利用2011年3月到7月四個月的時間蒐集包括一般公民、公、私博奕經營者,媒體相關業者,網路中介服務提供者(ISP、網路交易系統),體育賽事提供者等各界意見,並舉辦相關研討會,以討論當前歐盟網路博奕的相關問題。
根據最新消息,今年2月27日,歐盟執委會召集歐盟各國網路博奕管理機關以及專家,分就綠皮書、研討會之結論以及彙整而來的諮詢意見(共260份)加以討論。與會的歐洲博奕協會(European Gaming and Betting Association,EGBA)秘書長Sigrid Ligné支持執委會的作法,表示希望儘快推動具歐盟層級的網路博奕規範立法,以保障消費者的權益。歐盟執委會雖欲整合各成員國間有關博奕的法令,惟目前仍有反對聲浪,部分成員國希望能保有自己的網路博奕規範,故本案未來之發展,值得後續密切注意。
Google為了提供客製化的廣告服務,利用搜尋引擎、Youtube、Gmail及其他服務,在事前未告知並取得使用者同意的情況下,蒐集人們的資料(包括搜尋紀錄、電子郵件、第三方網站軌跡資料、位置資訊及影片觀看紀錄等)。歐洲各國隱私監管機構對此表示憂心,認為Google恐將以前所未有的規模,掌握使用者的一舉一動,紛紛投入調查工作,並相繼認為Google確實已經違反其內國法。 荷蘭資料保護局(Data Protection Authority, DPA)主席Jacob Kohnstamm於2014年12月15日表示,使用者有權知悉他們在某一平台輸入的資料,其他平台也可以利用它們,並要求Google在合併不同服務所取得的個人資料前,應以跳出不同視窗等方式供使用者點選,俾以取得其明示同意(unambiguous consent),僅只透過一般隱私條款,並不足以提供當事人清楚且一致的資訊(clear and consistent imformation)。 DPA希望Google不要再考驗他們的耐心,並揚言對Google處以1500萬歐元罰鍰,除非它在2015年2月底前完成改善。但面對DPA的最後通牒,Google僅回應,他們已經大幅修正了隱私權政策,很遺憾DPA仍作出這樣的決定,但他們將儘快與歐洲各國隱私監管機構就後續修訂方案進行討論。
印度藥廠、非政府組織對未來將簽屬之歐盟-印度FTA表示反對今(2011)年3月中旬,印度製藥業者代表及相關非政府組織團體共同對外表示,就印度與歐盟即將簽署之自由貿易協議(Free Trade Agreement;簡稱FTA),將正式採取反對之立場。 關於上述印度製藥業者代表及非政府組織團體之所以表示反對歐-印兩國簽署FTA之理由,其主要,乃係因歐盟方面為保障歐盟自身製藥業者本身之利益而擬於日後雙方將所簽署之FTA文件中,設置「資料專屬」條款而生;對此,代表印度境內多家藥廠之印度製藥協會(Indian Pharmaceutical Alliance)秘書長Dilip Shah表示:「目前歐盟方面正利用各種高壓與不正之手段,來迫使印度政府同意其擬置入之資料專屬保護條款」;但歐盟官員John Clancy卻解釋:「歐盟政府之所以擬於將簽訂之FTA中設置資料專屬條款,所寄望者,無非是要為歐盟境內製藥業者,尋求一個平等互惠之立基點而已;換言之,歐盟政府所為之一切,乃是基於要為印度與歐盟兩國業者打造一個公平合理之貿易商業環境」,另外,其還強調:「針對資料專屬條款之簽訂,原則上應在雙方達成共識之前提下進行」。 雖然歐盟方面目前已嘗試作出如上解釋,但印度國內各界似仍普遍認為,一旦同意將資料專屬條款納入,未來除將嚴重影響廣大用藥病患近用低價救命藥品之權益外,亦將大幅限制新興國家產製學名藥品之能力;故包括HIV病患及其他印度民間團體共計超過2000名抗議者,於今年3月2日時,皆紛紛走上新德里市中心街頭,對歐-印即將簽署FTA表達其強烈之抗議與不滿;足見,該項條款將造成之實質影響,絕非歐盟單方三言兩語即可輕描淡寫地帶過;而最終之談判結果,是歐盟方面將作出合理之讓步?還是印度方面為挽最大貿易夥伴之心,而終以犧牲廣大病患及國內製藥業者權益來作為可能之對價?是破局?還是完滿結局?則皆有待後續觀察,方見分曉。
新加坡國會於2020年11月通過個人資料保護法之修正案新加坡通訊暨資訊部(Ministry of Communications and Information, MCI)於2020年11月2日發布新聞稿表示,新加坡國家議會(Parliament of Singapore)通過個人資料保護法(Personal Data Protection Act, PDPA)修正案。主要由新加坡個人資料保護委員會(Personal Data Protection Commission, PDPC)擔任執行與管理機關,而新加坡個人資料保護法僅適用於私人企業、非公務機關。 新加坡通訊暨資訊部特別強調,該個人資料保護法於2013年1月生效,而近年物聯網、人工智慧等新興科技瞬息萬變,隨著資料量急遽增長,企業組織利用個人資料進行創新,成為了社會、經濟和生活的一部分,此次修法意在因應新興科技的進步與新商業模式的發展,使該法可適應、接軌於複雜的數位經濟趨勢,同步維護消費者在數位經濟中的權益,更加符合國際框架,使總部位於新加坡的公司在擴展全球市場時,有助其調整和降低合規成本與風險。主要將加強消費者保護並支持企業業務創新,希望以最大程度提高私部門收益、減少蒐集和利用個人資料的風險,以取得平衡,修訂重點整理如下: 透過組織問責制度,加強消費者之信任; 加強組織使用個人資料開發創新產品,提供個人化服務、提高組織之營運效率; 資料外洩時的強制性通知規定、責任(可參見26A條以下); 提高企業造成資料外洩時的罰款最高額度,當企業組織年營業額超過1000萬美金者,可處以該組織在新加坡年營業額的10%,或100萬新加坡幣(約62萬歐元),以較高者為準(可參見48J條以下); 強化個人資料保護委員會的執法權限,提高執法效率; 為了強化消費者的自主權(consumer autonomy)、對其個資的控制權,規範資料可攜義務(data portability obligation),使個人能要求將其個人資料的副本傳輸到另一個組織(可參見26F條以下); 允許企業在特定合法利益(legitimate interests)、業務改善(business improvement purpose)之目的情況下,對於個資之蒐集、使用、揭露,得例外不經當事人同意,意即不需經當事人事先同意,即可蒐集、利用或揭露消費者個資,例如開發改善產品和進行市場調查研究、在支付系統中進行異常檢測以防止詐欺或洗錢、改善營運效率和服務等目的。(可參見附表一第三、第五部分) 允許關聯企業(related corporations)間,在基於「明確定義相關限制」(clearly defined limits)之相同目的前提下,例如透過具有拘束力的公司規則(binding corporate rules)施以一定限制時,可在彼此內部間蒐集、揭露個人資料。(可參見附表一第四部分) 針對「視為同意」(deemed consent)之相關規定,包含告知後同意(consent by notification)做進一步修訂,將允許企業組織在具契約必要性等特定情形下,在未明確徵得當事人同意之下,向另一個組織或外部承包商(contractors)揭露其個人資料,以利履行契約(fulfil contracts),但該組織與該當事人之間的契約中需有明示條款(express terms)。(可參見15A條以下)
德國聯邦資訊技術,電信和新媒體協會針對AI及自動決策技術利用提出建議指南德國聯邦資訊技術,電信和新媒體協會於2018年2月6日在更安全的網路研討會中針對利用人工智慧及自動決策技術利用提出建議指南(Empfehlungen für den verantwortlichen Einsatz von KI und automatisierten Entscheidungen),旨在提升企業數位化與社會責任,並提升消費者權益保護。 本份指南提出六項建議: 促進企業內部及外部訂定相關準則 例如規定公司在利用演算法和AI時,必須將影響評估列入開發流程,並列為公司應遵守的道德倫理守則,以確保開發的產品或服務符合公平及道德。 提升透明度 使用者如有興趣了解演算法及其含義,企業應協助調查並了解使用者想獲知的訊息,並透過相關訊息管道提升產品及服務透明度。因此,企業應努力使演算法及其操作和含義能夠被使用者理解。此亦涉及即將實施的歐盟一般資料保護規則中的透明度義務。在機器學習或深度學習情況下,可能會增加理解性和可追溯性難度,但有助於分析流程並使其更接近人類理解的方法在科學和商業實踐中,應特別關注並進一步討論。另外,透過教育及使用說明協助及控制功能,教導消費者係建立雙方信任的重要手段。企業應在第一線中說明產品或服務中使用的手段(演算法,機器學習,AI)。除了解釋使用那些技術來改進產品和服務外,應一併解釋如何從技術控制過程中獲得相關知識以及提供那些後援支持。另外,例如透過幫助頁面,儀表板或部落格,解釋發生什麼以及如何做出某些影響深遠的自動化決策,使用戶更了解有關使用自動決策相關訊息。因此建議企業採取強制有效以建立信任的措施,使用戶理解是否及如何使用相關演算法,此可能包括使用自動化決策,使用特定資料組和使用技術的目的,亦即使用戶對演算法,機器學習或AI支持的決策有基本的了解。 為全體利益使用相關技術 人工智慧等新技術之重要性不應被低估,目前在生活和工業等眾多領域皆有廣泛應用。對於個人和集體而言,將可帶來巨大的利益,因此應該充分利用。例如,人工智慧可降低語言障礙,幫助行動不便的人可更加獨立自主生活,改善醫療診斷,提升能源供應效率,甚至是交通規劃和搜索停車位,都只是人工智慧偉大且已被使用的案例。為促進技術發展,應公平地利用其優勢並預留商業應用模式的空間,同時充分解決涉及的具體風險。產業特定的解決方案十分重要,但應兼顧受影響者的利益,並與廣大公眾利益找出妥協平衡點,且應排除不適當的歧視。建議在使用決策支持技術時,應事先檢查相關後果並與其利益比較。例如,可以在資料保護影響評估的框架進行。作為道德準則的一部分,必須確保演算法盡可能量準確地預測結果。 開發安全的資料基礎 資料係人工智慧支援決策的基礎。與人為決策者相同,資料不完整或錯誤,將導致做出錯誤的決定。因此決策系統的可靠性仍取決資料的準確性。但資料質量和資料來源始終不能追溯到源頭,如果可能的話,只有匯總或非個人資料可用於分析或分類用戶群組。因此,確切細節不可被使用或揭露。因此建議企業應考慮要使用的資料、資料的類別和在使用AI系統前仔細檢查資料使用情況,特別是在自我學習系統中資料引入的標準,並根據錯誤來源進行檢查,且儘可能全面記錄,針對個人資料部分更應謹慎處理。 解決機器偏差問題 應重視並解決所謂機器偏差和演算法選擇和模型建立領域的相關問題。解釋演算法,機器學習或AI在基層資料選擇和資料庫時所產生決策偏見相當重要,在開發預期用途的演算法時必須納入考量,對員工應針對道德影響進行培訓,並使用代表性紀錄來創建可以識別和最小化偏差的方法。企業並應該提高員工的敏感度並培訓如何解決並減少機器偏見問題,並特別注意資料饋送,以及開發用於檢測模式的內、外部測試流程。 適合個別領域的具體措施和文件 在特別需要負責的決策過程,例如在車輛的自動控制或醫療診斷中,應設計成由責任主體保留最終的決策權力,直到AI的控制品質已達到或高於所有參與者水平。對類人工智慧的信任,並非透過對方法的無條件追踪來實現,而是經過仔細測試,學習和記錄來實現