歐洲商會在10月26日舉行記者會,公布「2006-2007 年建議書」。該份建議書肯定我政府改善投資環境的努力,但該商會仍然呼籲政府要加速兩岸貿易正常化、強化內部溝通與外部協調,才能提供最完善的國際投資環境。
根據統計,歐盟在台投資大幅躍升,今年更超越美國在台投資總額,居外資在台投資第一位,顯示歐商對於台灣投資環境的重視與信心;政府也有決心繼續鬆綁法規,強化區域整合,以提供完善投資環境。對於歐洲商會建議之重點議題,經建會已對於各項議題作出初步回應,並表示行政院相關機關會積極檢討並持續溝通。
經建會胡勝正主委強調,歐洲商會所關切的議題有些牽涉全面政治環境考量,例如擴大開放大陸商品來台或放寬大陸投資40 %上限等,將請主管機關朝放寬方向為整體性之研議規劃;其至於他屬現行政策可行但未解決問題,經建會將持續協調相關部會,朝開放的方向規劃推動。
美國紐約州律師 Eliot Spitzer 4 月 4 日 表示, 他已經 對 Direct Revenue LLC 這家網路公司提出告訴。控訴其秘密安裝上百萬之間諜軟體( Spyware )至網路使用者的電腦中,或利用已安裝於使用者硬碟中之間諜軟體,以彈出視窗方式進行廣告,而其中有很多都屬於色情廣告;這些程式具追蹤網路使用者活動之功能,且一經下載,使用者就極難移除甚至不易察覺。 Spitzer 將此訴訟上訴到紐約州之最高法院,認為 Spitzer 應該為未經使用者同意秘密安裝間諜軟體,或透過已存在的間諜軟體寄送廣告之行為負責。 Spitzer 同時要求 Direct Revenue ,應對其所受之利益和不特定的金錢損害,負擔賠償責任。 去年( 2005 ), Spitzer 也對在洛杉磯的 Intermix Media Inc. 提起告訴。這家公司擁有一個相當受歡迎的 MySpace 的社交網絡網站,卻將間諜軟體隱藏附隨在上百萬的免費程式中,最後 Intermix Media Inc. 因而付了 750 萬美元。 Spitzer 表示這種詐欺的行為對消費者極不公平,且將對利用正當管道行銷的企業以及需要消費者信任的小型網路商家造成損害。 Spitzer 也說到,他將會繼續的與消費者站在同一陣線,與消費者共同為他們的掌控權而戰。 Direct Revenue 網站說明指出,他們已事先取得消費者之同意,而其提供之內容資訊和免費軟體,目的在交換傳遞廣告之功能。
加拿大在商展中展現數位內容產業之實力加拿大領導廠商 ICTV ,在 NCTA 國家商展 (NCTA National Show) 中,帶來了加拿大在互動電視內容方面的最新科技展現。 ICTV 是著名產品 HeadendWare 的製造商,此產品是在寬頻產業中傳輸互動電視內容最強大的平台。此一平台目前已取得多家加拿大廠商的協力合約,將共同在此平台上發展遊戲、娛樂與資訊內容等將關服務。 ICTV 解決方案部門的主管表示,加拿大確實是在互動數位內容方面的技術領先國家,並且正持續吸引更多的廠商與其合作。確實,加拿大的科技產業在全球屬領先地位,過去國內廠商對於新科技的注意力,大都放在美國、歐洲及日韓等國,或許,對加拿大進行更深入的關心與瞭解,可以挖掘到更多的報寶藏。
美國倡建無人機系統整合先導計畫考量無人機系統與國家空域系統及有人駕駛飛機的有效協作,除能提升產業效能與生產力外,同時也強化國家公領域安全的管理。基此,美國總統川普遂發布總統備忘錄倡議建立無人機系統整合先導計畫,期能透過該計畫促進創新應用,並以公私協力的方式進行無人機系統與國家空域系統之整合。
歐洲專利局發布人工智慧與機器學習專利審查指南正式生效歐洲專利局(European Patent Office, 下稱EPO)於2018年11月1日發佈新版專利審查指南已正式生效。此次新版的焦點為Part G, Chapter II, 3.3.1關於人工智慧(Artificial Intelligence, AI)與機器學習(Machine Learning, ML)的可專利性審查細則。 在新版審查指南Part G, Chapter II, 3.3中指出數學方法本身為法定不予專利事項,然而人工智慧和機器學習是利用運算模型和演算法來進行分類、聚類、迴歸、降維等發明,例如:神經網路、遺傳演算法、支援向量機(Support Vector Machines, SVM)、K-Means演算法、核迴歸和判別分析,不論它們是否能夠藉由數據加以訓練,此類運算模型和演算法本身,因具有抽象的數學性質而不具專利適格性。 其中,EPO亦針對人工智慧和機器學習相關應用舉例下列特殊情形,說明可否具備發明技術特徵: (一)可能具技術性 在心臟監測儀器運用神經網路辨別異常心跳,此種技術為具有技術貢獻。 基於低階特徵(例如:影像邊緣、像素數值)的數位影像、影片、音頻或語言訊號分類,屬於分類演算法的技術應用。 (二)可能不具技術性 根據文字內容進行分類,本身不具技術目的,而僅是語言學的目的(T 1358/09) 對抽象數據或電信網路數據紀錄進行分類,但未說明所產生分類的技術用途,亦被認定本身不具技術目的,即使該分類演算法的數據價值高(例如:穩健性)(T 1784/06)。 在新版審查指南中亦指出,當分類方法用於技術目的,其產生之訓練集(training set)和訓練分類器(training the classifier)的步驟,則能被視為發明的技術特徵。 近年來,人工智慧技術的應用分佈在我們的生活中,無論是自駕車、新藥開發、語音辨識、醫療診斷等,隨著人工智慧和機器學習技術快速發展,新版的審查指南將為此技術訂定可專利性標準,EPO未來要如何評判人工智慧和機器學習相關技術,將可透過申請案之審查結果持續進行關注。 「本文同步刊登於TIPS網站(https://www.tips.org.tw )」