FCC對於頻譜管理與拍賣的法規修正

       美國聯那通訊委員會 (Federal Communications Commission, FCC)在本月十四日公佈了一份有關「商業頻譜加強法案(Commercial Spectrum Enhancement Act, CSEA)」的執行命令與法規預訂修正通知(Declaratory Ruling and Notice of Proposed Rule Making)。希冀能制訂一定的行政規則而確切地遵照CSEA的規範;同時,FCC也在文件報告中也提出了一些對於目前競價拍賣規則的相關修正意見。


  最初在 CSEA法案中設計了頻譜的拍賣收益機制,主要係補償聯邦機構在一些特定頻率(216-220 MHz, 1432-1435 MHz, 1710-1755 MHz, and 2385-2390 MHz)中,以及一些從聯邦專屬使用區重新定頻到非專用區的頻率,因移頻所支應出的必要成本。而在FCC的公佈報告中,委員會認為惟有定義清楚,方能有效地落實該法的執行。因此FCC詳細解釋說明了CSEA中對於「總體現金收益(total cash proceeds)」的意義,FCC認為所謂的總體現金收益應該是原始獲標的價格扣除掉任何有可能的折扣或扣損;同時,FCC也在預定修正公告中,認為應改變委員會的拍賣價格規定以配合CSEA的規定。另外,也修正了部落地的拍賣信用補償制度(Tribal Land Bidding Credit Rule)等規定。

相關連結
※ FCC對於頻譜管理與拍賣的法規修正, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=570&no=57&tp=1 (最後瀏覽日:2026/02/14)
引註此篇文章
你可能還會想看
因應使用「生成式AI(Generative AI)」工具的營業秘密管理強化建議

2024年7月1日,美國實務界律師撰文針對使用生成式AI(Generative AI)工具可能導致的營業秘密外洩風險提出營業秘密保護管理的強化建議,其表示有研究指出約56%的工作者已經嘗試將生成式AI工具用於工作中,而員工輸入該工具的資訊中約有11%可能包含公司具有競爭力的敏感性資訊或客戶的敏感資訊,以Chat GPT為例,原始碼(Source Code)可能是第二多被提供給Chat GPT的機密資訊類型。系爭機密資訊可能被生成式AI工具提供者(AI Provider)用於訓練生成式AI模型等,進而導致洩漏;或生成式AI工具提供者可能會監控和存取公司輸入之資訊以檢查是否有不當使用,此時營業秘密可能在人工審查階段洩漏。 該篇文章提到,以法律要件而論,生成式AI有產生營業秘密之可能,因為營業秘密與著作權和專利不同之處在於「發明者不必是人類」;因此,由生成式 AI 工具協助產出的內容可能被視為營業秘密,其範圍可能包括:公司的內部 AI 平台、基礎的訓練算法和模型、輸入參數和輸出結果等。惟基於目前實務上尚未有相關案例,故生成式AI輸出結果在法律上受保護的範圍與條件仍需待後續的判例來加以明確。 實務專家提出,即使訴訟上尚未明確,企業仍可透過事前的管理措施來保護或避免營業秘密洩露,以下綜整成「人員」與「技術」兩個面向分述之: 一、人員面: 1.員工(教育訓練、合約) 在員工管理上,建議透過教育訓練使員工了解到營業秘密之定義及保護措施,並告知向生成式AI工具提供敏感資訊的風險與潛在後果;培訓後,亦可進一步限制能夠使用AI工具的員工範圍,如只有經過培訓及授權之員工才能夠存取這些AI工具。 在合約方面,建議公司可與員工簽訂或更新保密契約,納入使用生成式AI的指導方針,例如:明確規定禁止向生成式AI工具輸入公司營業秘密、客戶數據、財務信息、未公開的產品計劃等機密資訊;亦可增加相關限制或聲明條款,如「在生成式AI工具中揭露之資訊只屬於公司」、「限制公司資訊僅能存儲於公司的私有雲上」等條款。 2.生成式AI工具提供者(合約) 針對外部管理時,公司亦可透過「終端使用者授權合約(End User License Agreement,簡稱EULA)」來限制生成式AI工具提供者對於公司在該工具上「輸入內容」之使用,如輸入內容不可以被用於訓練基礎模型,或者該訓練之模型只能用在資訊提供的公司。 二、技術方面: 建議公司購買或開發自有的生成式AI工具,並將一切使用行為限縮在公司的私有雲或私有伺服器中;或透過加密、防火牆或多種編碼指令(Programmed)來避免揭露特定類型的資訊或限制上傳文件的大小或類型,防止機密資訊被誤輸入,其舉出三星公司(Samsung)公司為例,三星已限制使用Chat GPT的用戶的上傳容量為1024位元組(Bytes),以防止輸入大型文件。 綜上所述,實務界對於使用生成式AI工具可能的營業秘密風險,相對於尚未可知的訴訟攻防,律師更推薦企業透過訴訟前積極的管理來避免風險。本文建議企業可將前述建議之作法融入資策會科法所創意智財中心於2023年發布「營業秘密保護管理規範」中,換言之,企業可透過「營業秘密保護管理規範」十個單元(包括從最高管理階層角色開始的整體規劃建議、營業秘密範圍確定、營業秘密使用行為管理、員工管理、網路與環境設備管理、外部活動管理,甚至是後端的爭議處理機制,如何監督與改善等)的PDCA管理循環建立基礎的營業秘密管理,更可以透過上述建議的做法(對單元5.使用管理、單元6.1保密約定、單元6.4教育訓練、單元7.網路與環境設備管理等單元)加強針對生成式AI工具之管理。 本文同步刊登於TIPS網站(https://www.tips.org.tw)

歐盟對製藥產業是否違反市場競爭展開調查

  製藥產業的競爭情勢越來越劇烈,藥商間為了求取最大的利益,在以研發新藥為主的原開發藥廠及以複製專利到期的藥品為核心的學名藥廠之間,衍生出新的競合模式,特別是針對專利侵權訴訟予以和解。過去幾年,美國FTC與FDC花了相當多的時間調查製藥界此一實務是否會扭曲市場競爭,因而違反競爭法的精神,美國國會更在2003年底通過法律,對此類競爭予以規範。繼美國之後,歐盟也在2008年1月中,就有關原開發藥廠與學名藥間的競合作關係,向境內的製藥產業發出產業調查,這是歐盟首次就製藥產業內的專利訴訟和解協議展開調查。   歐盟此次調查最主要的目的是為了深入瞭解製藥產業的商業實務,調查內容包括:(1)在專利的策略方面,藥廠對於專利的取得與執行法律保護,是為了要保護創新發明,還是為了阻擋或限制創新藥以及(或)學名藥競爭的目的;(2)藥商之間訴訟纏訟的情形如何;(3)關於專利訴訟和解協議的簽署情形。雖然歐盟此項調查並不一定意味其即可找出原開發藥廠與學名藥廠違反競爭的證據,但歐盟此次的調查舉動或許意味,歐盟已從美國經驗中開始懷疑製藥產業內原開發藥廠與學名藥廠間不尋常的合作模式,對於是否有違反競爭之情事存疑。

俄亥俄州通過醫療用大麻合法化

  在俄亥俄州長於2016年6月18日簽署通過HB523法案後,俄亥俄州正式成為美國第25個將醫療用大麻合法化的州。這項法案將在今年11月生效,並且允許重症患者使用及採買醫療用大麻。   與原本在2015年11月被退回的法案相比,娛樂性用途大麻直接被排除在本次法案適用範圍外,而且不允許個人在家裡種植或是直接抽食。因此,與一般人想像中,如同荷蘭般的大麻合法化政策相當不同。   當然,某種層面上來說,這項法案對重症病患是一大福音,他們可以合法取得大麻,不再因為持有大麻而被當成罪犯。但是俄亥俄州這部法案對於大麻使用者於現實生活中情況能帶來多大的改善,仍讓人懷疑。因為在俄亥俄州現行法律及行政系統下,俄亥俄州政府並未隨著新的法案,推行相關行政措施。一般來說,在大麻合法化之區域,通常會要求雇主不得禁止員工使用與持有醫療用大麻,或是不可以因當事人有使用、持有或散佈醫療用大麻之紀錄或習慣,而拒絕錄用或是解聘之,同時,會禁止對員工施行藥物檢查。倘若雇主有前列之行為,通常會面臨處罰,例如:主管機關會取消該名雇主原先所享有之稅捐優惠或其他惠優措施。此外,員工得因雇主反禁藥之行為,對雇主提起訴訟。是以,在缺乏相關行政配套措施的情況下,俄亥俄州的大麻使用者未來在工作場所中,仍將會面臨許多挑戰以及障礙。   總而言之,俄亥俄州通過這部法案,在法律上可謂是一大里程碑,但尚與一般大眾認知的「大麻合法化」仍存有很大的差距。同時,未在行政作為上採取相對應的保障措施,仍可以想像將來醫療用大麻使用者在社會上仍將面臨許多障礙。

何謂「三螺旋理論」

  三螺旋理論,又稱三螺旋創新模型理論(Triple Helix Theory),主要研究大學、產業以及政府以知識經濟為背景之創新系統中之型態關係,由Etzknowitz與Leydesdorff於1995年首次提出。   因應知識經濟時代來臨,三螺旋理論著重於政府、學術界與產業界(即為產、官、學)三者在創新過程中互動關係的強化。該理論探討如何協調產業、政府、學界三方於知識運用和研發成果產出上的合作;當社會動態產生改變,過去單一強大的領域將不足以帶動創新活動,推動創新也非單一方的責任,此時產業、政府、學界的三螺旋互動便隨之發生:大學透過創新育成機構孕育企業創新,而產業則扮演將研發成果商業化之要角,政府則透過研發相關政策、計畫或法規制定,鼓勵企業和大學間研究發展合作。   有別於早期經濟合作暨發展組織(OECD)將「產業」作為主要研發創新主體,三螺旋理論更重視產業、政府、學界三大主體均衡發展,三方主體各自獨立發展,且同時與其他方維持相互協力合作,共同推進經濟與社會之創新發展。   在三螺旋理論下,產、官、學因其強弱不等的互動狀態,形成不同的動態模型(例如國家干預模型、自由放任模型、平衡配置模型等等),這些動態模型被認為是產生創新的主要動力來源,對未來新知識和科技創造與擴散的能力以及績效具有決定性的影響力。

TOP