美國最高法院判決診斷方法不具可專利性

  美國最高法院近日在Mayo Collaborative Services與Prometheus Laboratories一案中判決2項與免疫疾病有關的診斷方法專利無效,業界擔憂該判決將對處於新興發展階段的個人化醫療領域的研發投入與創新有著負面影響。

  本案源於Prometheus所擁有的在不同劑量下thiopurine藥物代謝情況的診斷方法專利(由於病患的藥物代謝率不同,因此醫生在判斷特定病患的藥物劑量高低有相當的困難度),Mayo購買使用Prometheus的診斷方法後, 2004年Mayo開始對外販售自己的診斷方法。Prometheus主張Mayo侵害其專利,聯邦地方法院認為該專利建構於自然法則與現象上,因此不具可專利性,但聯邦巡迴上訴法院則有不同的看法,本案因此一路爭執至最高法院。

  對於自然法則、現象以及抽象的概念,基於其作為科技發展的基礎工具,為避免妨礙創新發展,一直以來法院都持不具可專利性的看法。在相關的前案中,唯有在自然法則之外,包含創新概念的元素,才能超越自然法則本身而成為專利。本案中最高法院表示,本案專利方法步驟,不符合前述基於創新概念而授與專利的條件,且該方法步驟為該領域人所熟知、常用,授與專利將導致既有的自然法則被不當的受限而影響後續進一步的發現。

  評論者表示儘管該判決並未提供一個清楚的判斷標準,但並不因此讓下級法院對這類的個人化醫療專利全數否決。然本案對於可專利性客體的判斷,影響將不僅止於生命科學,進而包括所有涉及可專利性客體的軟體、商業方法類型專利,後續影響值得持續關注。

相關連結
※ 美國最高法院判決診斷方法不具可專利性, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=5730&no=55&tp=1 (最後瀏覽日:2025/12/26)
引註此篇文章
你可能還會想看
德國聯邦資訊技術,電信和新媒體協會針對AI及自動決策技術利用提出建議指南

  德國聯邦資訊技術,電信和新媒體協會於2018年2月6日在更安全的網路研討會中針對利用人工智慧及自動決策技術利用提出建議指南(Empfehlungen für den verantwortlichen Einsatz von KI und automatisierten Entscheidungen),旨在提升企業數位化與社會責任,並提升消費者權益保護。 本份指南提出六項建議: 促進企業內部及外部訂定相關準則 例如規定公司在利用演算法和AI時,必須將影響評估列入開發流程,並列為公司應遵守的道德倫理守則,以確保開發的產品或服務符合公平及道德。 提升透明度 使用者如有興趣了解演算法及其含義,企業應協助調查並了解使用者想獲知的訊息,並透過相關訊息管道提升產品及服務透明度。因此,企業應努力使演算法及其操作和含義能夠被使用者理解。此亦涉及即將實施的歐盟一般資料保護規則中的透明度義務。在機器學習或深度學習情況下,可能會增加理解性和可追溯性難度,但有助於分析流程並使其更接近人類理解的方法在科學和商業實踐中,應特別關注並進一步討論。另外,透過教育及使用說明協助及控制功能,教導消費者係建立雙方信任的重要手段。企業應在第一線中說明產品或服務中使用的手段(演算法,機器學習,AI)。除了解釋使用那些技術來改進產品和服務外,應一併解釋如何從技術控制過程中獲得相關知識以及提供那些後援支持。另外,例如透過幫助頁面,儀表板或部落格,解釋發生什麼以及如何做出某些影響深遠的自動化決策,使用戶更了解有關使用自動決策相關訊息。因此建議企業採取強制有效以建立信任的措施,使用戶理解是否及如何使用相關演算法,此可能包括使用自動化決策,使用特定資料組和使用技術的目的,亦即使用戶對演算法,機器學習或AI支持的決策有基本的了解。 為全體利益使用相關技術 人工智慧等新技術之重要性不應被低估,目前在生活和工業等眾多領域皆有廣泛應用。對於個人和集體而言,將可帶來巨大的利益,因此應該充分利用。例如,人工智慧可降低語言障礙,幫助行動不便的人可更加獨立自主生活,改善醫療診斷,提升能源供應效率,甚至是交通規劃和搜索停車位,都只是人工智慧偉大且已被使用的案例。為促進技術發展,應公平地利用其優勢並預留商業應用模式的空間,同時充分解決涉及的具體風險。產業特定的解決方案十分重要,但應兼顧受影響者的利益,並與廣大公眾利益找出妥協平衡點,且應排除不適當的歧視。建議在使用決策支持技術時,應事先檢查相關後果並與其利益比較。例如,可以在資料保護影響評估的框架進行。作為道德準則的一部分,必須確保演算法盡可能量準確地預測結果。 開發安全的資料基礎 資料係人工智慧支援決策的基礎。與人為決策者相同,資料不完整或錯誤,將導致做出錯誤的決定。因此決策系統的可靠性仍取決資料的準確性。但資料質量和資料來源始終不能追溯到源頭,如果可能的話,只有匯總或非個人資料可用於分析或分類用戶群組。因此,確切細節不可被使用或揭露。因此建議企業應考慮要使用的資料、資料的類別和在使用AI系統前仔細檢查資料使用情況,特別是在自我學習系統中資料引入的標準,並根據錯誤來源進行檢查,且儘可能全面記錄,針對個人資料部分更應謹慎處理。 解決機器偏差問題 應重視並解決所謂機器偏差和演算法選擇和模型建立領域的相關問題。解釋演算法,機器學習或AI在基層資料選擇和資料庫時所產生決策偏見相當重要,在開發預期用途的演算法時必須納入考量,對員工應針對道德影響進行培訓,並使用代表性紀錄來創建可以識別和最小化偏差的方法。企業並應該提高員工的敏感度並培訓如何解決並減少機器偏見問題,並特別注意資料饋送,以及開發用於檢測模式的內、外部測試流程。 適合個別領域的具體措施和文件 在特別需要負責的決策過程,例如在車輛的自動控制或醫療診斷中,應設計成由責任主體保留最終的決策權力,直到AI的控制品質已達到或高於所有參與者水平。對類人工智慧的信任,並非透過對方法的無條件追踪來實現,而是經過仔細測試,學習和記錄來實現

國際產業創新合作策略實例 – 歐盟之歐洲科技與創新機構(EIT)

歐盟「未來工廠」發展計畫

  歐盟執行委員會依展望2020 (Horizon 2020)於2016年4月14日至15日召開未來工廠公私夥伴合作 (FoF cPPP)研討會,並展示目前資助的研究與創新成果,透過本計畫將協助歐盟內製造業,特別是中小企業,將資通訊及關鍵技術與整個工廠生產鏈結合,達到整體製造業升級。   計劃具體目標如下:(1)以資通訊技術為基礎的解決方案導入製造業生產過程,增加產品獨特性、多樣化、可大規模生產,及保有高度靈活性,以迅速反應瞬息萬變的市場。(2)縮短進入市場的研發製程,提升產品質量,並透過數位化設計、成型、模擬實作及預測分析,提升工作效率。(3)改善整合生產環境的人為因素。(4)透過現代資通訊基礎的生產技術使得資源、材料、能源更有持續性。(5)促進並強化製造領域的共同平台及其生態系統。(6)從獨特的地理位置創建虛擬價值鏈,從而善用優秀人才的潛力。   我國為整合新創能量,以創造製造業下一波成長動能,今年亦陸續公布「智慧機械產業推動方案」與「數位國家‧創新經濟發展方案」,以具高效率、高品質、高彈性等特徵之智慧生產線,透過雲端及網路與消費者快速連結,打造下世代工廠與聯網製造服務體系。

美國公布TPP官方版本確認智慧財產權及資料專屬權條款

  美國貿易代表辦公室(the Office of the United States Trade Representative,簡稱USTR)於11月5日公布泛太平洋夥伴協議官方版本,並待各成員國國會同意。其中第18章是有關智慧財產權受到爭議較多。其涉及層面包括商標、地理標示、著作權及相關權利、網路服務提供者、資料專屬保護、專利連結、發明專利、工業設計、智慧財產權執行等等。其重點如下: (1)商標:TPP規定不得以視覺可感知的標識作為申請商標註冊的要件。 (2)地理標示:TPP要求提供適當及公開的程序來保護地理標示。 (3)著作權及相關權利:其中最重要者為將著作、表演或錄音物的著作權保護期間,延長至70年。 (4)網路服務提供者:TPP要求對ISP業者提供法律誘因,免除其可能擔負的共同侵權責任,鼓勵其與著作權人合作,共同遏止網路侵權。 (5)資料專屬保護:TPP要求對農藥或醫藥品提供資料專屬保護,保護期間為新化學性農藥至少10年;新成分新藥至少5年;已知藥品之新適應症、新複方或新投藥方法之臨床資料至少3年;新生物藥品至少8年或5年(併同其他有效保護市場機制)。 (6)專利連結:TPP要求建立專利連結制度。 (7)發明專利制度:其中較為重要者為TPP規定優惠期期間為本國申請案申請日前1年,且不限制公開的行為態樣。對於審查不合理遲延者,應補償其專利期限。 (8)工業設計:TPP要求應提供物品部分設計之保護。 (9)智慧財產權保護的執行:TPP規定法院有權判決敗訴方負擔訴訟及律師費用費用;透過行政、司法及海關等層面採取迅速保全措施等等。

TOP