德國漢堡地方法院4月20日針對GEMA控告YouTube一案作出判決(Az. 310 O 461/10),確認影片平台業者著作權法上之義務,預料將為兩造授權金協議過程的僵局,造成一定影響。
本案原告GEMA主張被告YouTube應採取措施,阻止其享有權利之12個影音檔案,繼續透過YouTube平台在德國境內流通。而本案的爭點即在於:對於YouTube平台上由網友上傳、且涉嫌侵害著作權的影片內容,被告移除及防止侵害的責任範圍究竟多大。
本案法院認為,因被告本身並非將違法內容上傳之行為人,無法以德國電信服務法(TMG)第7條規定,課予其侵權行為人責任(Täterhaftung)。但被告因提供、經營平台,對著作權侵害有所「貢獻」,故法院依TMG第10條規定,認定被告YouTube僅在知悉特定侵權情事的情況下,才負擔移除或阻斷網路接取的義務;而當平台業者收到著作權侵害的通知後,便須立即阻斷涉嫌侵權的影片,並採取合理的措施,防止侵權行為再發生。然而,法院也強調,平台業者只負擔「合理」的檢查及管控義務,故平台業者毋須逐一檢視所有已上傳的影片。
按本案法院見解,所謂合理的措施,包括YouTube須利用其所研發的「內容識別系統Content-ID」,防止特定的侵權內容再次發生。另YouTube也負擔加裝文字過濾軟體的義務,以杜絕含有特定標題或關鍵字之影片上傳至平台。
據了解,雙方均發表聲明對此判決結果表示肯定。除原告得以主張其所享有的著作權外,YouTube也認為法院明確界定影視平台業者應作為的義務範圍。但對原告GEMA來說,重點在如何透過訴訟程序對YouTube施壓,重啟授權金的談判。兩造後續對長久來授權金計算公式的歧異將如何達成共識,值得關注。
壹、義大利最新AI法案簡介 義大利於2025年9月17日通過《人工智慧規範與政府授權》立法法案(Disposizioni e delega al Governo in materia di intelligenza artificiale,下稱1146‑B法案),為該國首次針對AI全面立法,亦為歐盟成員國內AI專法先驅。義大利將歐盟《人工智慧法》(AI Act,下稱AIA)框架轉化為國內法,並設立獨立窗口與歐盟對接。為確保落地效率並兼顧國家安全與資料治理,本法採「雙主管機關制」,由隸屬於總理府(Presidenza del Consiglio dei Ministri)之數位局(Agenzia per l’Italia Digitale,AgID)及國家網路安全局(Agenzia per la Cybersicurezza Nazionale,ACN)共同執行。AgID 負責AI技術標準、互通性與公共行政實務執行;ACN則負責資安韌性、事故通報與高風險AI安全性。 目前該法案已由參議院(Senato della Repubblica)審議並表決通過,2025年9月25日已載於義大利《官方公報》(Gazzetta Ufficiale),再經過15天緩衝期後,預計於2025年10月10日正式生效。然截至2025年10月27日為止,未有官方宣布該法案正式生效之證明,故法案是否依該版本內容正式施行仍待確認。其中醫療為AIA顯示之高風險領域之一,亦涉及資料隱私與病患權益等敏感法益,可謂本法落地機制中具代表性之政策面向,故本文特以醫療AI應用為分析重點。 貳、設立醫療AI應用平臺,輔助專業醫護及強化醫療服務取得 1146‑B法案第10條規定,將由義大利衛生服務局(Agenzia nazionale per i servizi sanitari regionali,AGENAS)主導設立該國家醫療AI應用平臺。該平臺定位為全國級資料治理與AI導入審查機制工具,主要功能為對醫療專業人員提供照護病患與臨床實踐時無法律約束力之建議,並對病患提供接觸社區醫療中心AI服務之管道與機會。該平臺僅得依「資料最小化原則」(dati strettamente necessary)蒐集以上醫療服務所需之必要資料,經向衛生部(Ministero della salute)、資料保護局(Garante per la protezione dei dati personali)及CAN徵詢意見後,由 AGENAS 負責資料處理,並經地方常設協調會議同意後,得以公告方式制定符合歐盟《一般資料法規》(General Data Protection Regulation,GDPR)之風險控管與敏感健康資料處理細則。 在確保資料安全合規後,法案強調對醫療保健之服務可及性(accesso ai servizi)進行改善,病人能透過此平臺更便利地接觸到社區醫療中心所提供之各類AI健康醫療服務,如診斷輔助、數位健康檔案調閱等,亦符合AIA強調AI發展應確保社會公益等權利之宗旨。 參、醫療用AI之限制與目標 法案第7條第5項規定AI僅能作為醫療決策輔助工具提供無拘束力之建議,重申前述醫療平臺相關規定;AI亦不得根據歧視性標準選擇或限制病人獲取醫療服務。病人享有「知情權」(diritto di essere informato),即有權知悉診療過程中是否使用有使用AI、使用方式(如僅為輔助)及其限制。針對健康資料之隱私處理方面,如病歷、基因資料、診斷紀錄等,要求醫用AI系統須持續監測、定期驗證與更新,以降低錯誤風險,維護病人健康安全,亦明文強調醫療AI之使用應以改善身心障礙者生活為目標。 四、總結 1146-B法案在醫療 AI 治理上,透過雙主管機關制平衡歐盟對接、技術發展與風險控管,符合AIA要求並避免權責衝突。建立由 AGENAS 主導的醫療 AI 應用平臺,在相關部門意見下運作,確保資料處理與服務推動合規與安全。病人權利方面,強調知情權、健康資料隱私與地方醫療AI普及,符合資料最小化與 GDPR 規範,展現義大利在醫療 AI 上兼顧創新、透明與權益保障之立場,往後應持續關注AGENAS釋出之關於該平臺使用之相關細則。 本文為資策會科法所創智中心完成之著作,非經同意或授權,不得為轉載、公開播送、公開傳輸、改作或重製等利用行為。 本文同步刊登於TIPS網站(https://www.tips.org.tw)
專利連結專利連結(patent linkage,亦有稱patent registration linkage)是1984年美國《藥品價格競爭及專利期回復法(Hatch-Waxman Act, HWA)》所創設。傳統上,醫藥主管機關與專利主管機關的權責是有所區分的。然而,醫藥主管機關因為醫藥管理制度與專利制度的連結,使得醫藥主管機關須審查專利相關事務,即醫藥主管機關在審查學名藥上市許可申請時,必須同時判斷該藥品是否侵害專利藥公司就該藥品所掌握的專利。 專利連結制度可以採取幾種形式,最簡單形式的專利連結可能涉及了以下的要求:當有學名藥廠對專利藥公司所生產的的專利藥品提出學名藥,並尋求醫藥主管機關批准時,則應向專利藥公司告知學名藥廠的身份。強度較強的專利連結,在該專利藥品的專利到期或者無效之前,可以禁止醫藥主管機關核發上市許可給學名藥品。而更強的專利連結不僅可以禁止核發上市許可,也可以禁止在專利期間內對學名藥品的審查。 我國目前並未採納專利連結制度,但在我國目前擬積極參與的《泛太平洋夥伴協議(TPP)》中則要求成員應採納專利連結制度,故未來我國動向將值得關注。
南韓預告修訂《個人資料保護法施行令》草案,擬擴大本人資料傳輸請求權適用範圍2025年6月23日,韓國個人資料保護委員會(개인정보보호위원회,下簡稱個資會)宣布修訂《個人資料保護法施行令》(개인정보 보호법 시행령)草案,擴大「本人傳輸請求權」(본인전송요구권)制度的適用範圍至特定大型個人資料處理者(개인정보처리자)。 南韓政府於2024年3月開始實施MyData(마이데이터)制度,賦予其國民「本人傳輸請求權」。所謂「本人傳輸請求權」,係指當事人向資料持有者請求傳輸個人資料給自己或特定第三方的權利,而個人資料則係指包含所有能夠識別本人身分或與本人有直接關聯的資訊。 本人傳輸請求權的立法目的,在於解決當事人將資料授權予特定企業或機關使用後,無法追蹤個人資料動向的問題。當事人可透過行使本人資料傳輸請求權,隨時確認資料如何被使用、有無被再次轉交他方,以及自由決定是否收回或轉移持有者擁有的個人資料。有助於解決個人資料利用權限一經授權後便難以掌控的問題,並提高國民對於個人資料的自主控制能力。 本次修法前,本人資料請求權的適用範圍僅限於醫療與電信產業,個人資料保護法施行令預告修訂草案進一步將符合以下標準的個人資料處理者納入本人傳輸請求權適用範圍: 1. 年營業額達1500億韓元以上的企業; 2. 持有個人資料人數達100萬人以上的企業或機構; 3. 敏感資料、高識別度資料達5萬人以上的企業或機構; 4. 2萬人以上大學或公部門機關。 韓國個資會此次提出的預告修訂草案,建立了一套可跨領域適用的個人資料管理政策架構,為國民資料自主性與控制權提供更完整的保護,值得作為我國個人資料治理制度之參考。
新加坡科技與研究局針對未來工廠提出研究規劃及方向新加坡科技與研究局(Agency for Science, Technology and Research)於2017年7月26日提出未來工廠(Toward the factories of the future)概念及相關研究方向,自動化(Automation)、機器人(robotics)、先進電腦輔助設計(advanced computer-aided design)、感測和診斷技術(sensing and diagnostic technologies)將徹底改變現代工廠,可製造的產品範圍廣泛,從微型車乃至於飛機皆可生產。積層製造(Additive Manufacturing),又稱3D列印(3D printing),可使用單一的高科技生產線來創造許多不同的產品項目,而不需要傳統大規模生產的設計限制和成本,伴隨未來高效能電腦和感測技術之進步,積層製造速度也會隨之加快。而智慧工廠(smart factories)將與物聯網(IOT)、雲端計算(cloud computing)、先進機器人(advanced robotics)、即時分析(real-time analytics)與機器學習(machine learning)等技術與積層製造技術結合,將大為提升生產速度及產量。 為加速及改善積層製造的製程,最重要的方法之一,是使用材料物理學的基本原理來模擬製造過程,而近期更引進跨學科之研究,「模擬」最終產品化學成分和機械性能的微觀結構。因積層製造是一個複雜又困難的過程,透過變化既有規則之模擬(Game-Changing simulations),若建立完成模型且模擬成功,將成為積層製造的殺手級技術。在未來的五到十年,我們將看到更多的零件從積層製造技術生產出來,而且這種技術有機會成為未來工廠的生產基礎。由於現行材料及製造流程與機器必須配合一致,些許的差異皆會生產出不同品質之產品,故未來積層製造工廠的結果穩定重現性(repeatability)和標準化(standardization),將是產品商業化的主要障礙與挑戰。