歐洲專利局(European Patent Office, 下稱EPO)於2018年11月1日發佈新版專利審查指南已正式生效。此次新版的焦點為Part G, Chapter II, 3.3.1關於人工智慧(Artificial Intelligence, AI)與機器學習(Machine Learning, ML)的可專利性審查細則。 在新版審查指南Part G, Chapter II, 3.3中指出數學方法本身為法定不予專利事項,然而人工智慧和機器學習是利用運算模型和演算法來進行分類、聚類、迴歸、降維等發明,例如:神經網路、遺傳演算法、支援向量機(Support Vector Machines, SVM)、K-Means演算法、核迴歸和判別分析,不論它們是否能夠藉由數據加以訓練,此類運算模型和演算法本身,因具有抽象的數學性質而不具專利適格性。 其中,EPO亦針對人工智慧和機器學習相關應用舉例下列特殊情形,說明可否具備發明技術特徵: (一)可能具技術性 在心臟監測儀器運用神經網路辨別異常心跳,此種技術為具有技術貢獻。 基於低階特徵(例如:影像邊緣、像素數值)的數位影像、影片、音頻或語言訊號分類,屬於分類演算法的技術應用。 (二)可能不具技術性 根據文字內容進行分類,本身不具技術目的,而僅是語言學的目的(T 1358/09) 對抽象數據或電信網路數據紀錄進行分類,但未說明所產生分類的技術用途,亦被認定本身不具技術目的,即使該分類演算法的數據價值高(例如:穩健性)(T 1784/06)。 在新版審查指南中亦指出,當分類方法用於技術目的,其產生之訓練集(training set)和訓練分類器(training the classifier)的步驟,則能被視為發明的技術特徵。 近年來,人工智慧技術的應用分佈在我們的生活中,無論是自駕車、新藥開發、語音辨識、醫療診斷等,隨著人工智慧和機器學習技術快速發展,新版的審查指南將為此技術訂定可專利性標準,EPO未來要如何評判人工智慧和機器學習相關技術,將可透過申請案之審查結果持續進行關注。 「本文同步刊登於TIPS網站(https://www.tips.org.tw )」
歐洲資料保護監管機關研議提出「智慧電表系統發展準備建議」研究報告歐洲資料保護監管機關(European Data Protection Supervisor,以下簡稱EDPS)是一個獨立的監督機關,其任務主要在於監督歐盟個人資料的管理程序、提供影響隱私的政策及法制建議、與其他類似機關合作以確保資料的保護。 EDPS於今(2012)年6月8日,針對歐盟執委會於今(2012)年3月9日發布的「智慧電表系統發展準備建議」(Recommendation on preparations for the roll-out of smart metering systems,以下簡稱準備建議)提出相關意見。「智慧電表系統發展準備建議」乃係針對智慧電表部署之資料安全保護及經濟成本效益評估,提出發展準備建議,供會員國於進行相關建置及制定規範時之參考。然EDPS指出,執委會對於智慧電表中個人資料保護的重視雖值得肯定,但並未在準備建議中提供更具體、全面且實用的指導原則。智慧電表系統雖能帶來顯著的利益,但造成個人資料的大量蒐集,可能導致隱私的外洩,或相關數據遭使用於其他目的。 有鑑於相關風險,EDPS認為在準備建議中,應更加強其資料保護的安全措施,至少應包含對資料控制者在處理個人資料保護評估時有強制的要求;此外,是否有必要進行歐盟層級的立法行動亦應予以評估。EDPS提出的意見主要包括:(1)應提出更多有關選擇資料當事人及處理相關資料的法律依據,例如電表讀取的頻率、是否需取得資料當事人同意;(2)應強制「提升隱私保護技術」(privacy-enhancing technologies)的適用,以限縮資料的使用;(3)從資料保護的角度來釐清參與者的責任;(4)關於保存期間的相關原則,例如對於家戶詳細消費資訊的儲存期間、或在針對帳單處理的情形;(5)消費者能直接近取其能源使用數據,提供有效的方式使資料當事人知悉其資料的處理及揭露,提供有關遠端遙控開關之功能等訊息。
FDA發佈人工智慧/機器學習行動計畫美國食品藥物管理署(U.S. Food & Drug Administration, FDA)在2021年1月12日發布有關人工智慧醫療器材上市管理的「人工智慧/機器學習行動計畫」(Artificial Intelligence/Machine Learning (AI/ML)-Based Software as a Medical Device (SaMD) Action Plan)。該行動計畫的制定背景係FDA認為上市後持續不斷更新演算法的機器學習醫療器材軟體(Software as Medical Device, SaMD),具有極高的診療潛力,將可有效改善醫療品質與病患福祉,因此自2019年以來,FDA嘗試提出新的上市後的監管框架構想,以突破現有醫療器材軟體需要「上市前鎖定演算法、上市後不得任意變更」的監管規定。 2019年4月,FDA發表了「使用人工智慧/機器學習演算法之醫療器材軟體變更之管理架構—討論文件」(Proposed Regulatory Framework for Modifications to Artificial Intelligence/Machine earning (AI/ML)-Based Software as a Medical Device (SaMD) - Discussion Paper and Request for Feedback)。此一諮詢性質的文件當中提出,將來廠商可在上市前審查階段提交「事先訂定之變更控制計畫」(pre-determined change control plan),闡明以下內容:(1)SaMD預先規範(SaMD Pre-Specification, SPS):包含此產品未來可能的變更類型(如:輸入資料、性能、適應症)、變更範圍;(2)演算法變更程序(Algorithm Change Protocol, ACP):包含變更對應之處理流程、風險控制措施,以及如何確保軟體變更後之安全及有效性。 根據「人工智慧/機器學習行動計畫」內容所述,「事先訂定之變更控制計畫」構想被多數(包含病患團體在內)的利害關係人肯認,並於相關諮詢會議當中提出完善的細部建言。FDA將根據收到的反饋意見,於2021年以前正式提出有關人工智慧/機器學習上市後監管的指引草案(Draft Guidance),並持續研究提高演算法透明度、避免演算法偏見的方法。
美國參議院通過《2021美國創新暨競爭法案》 眾議院通過《美國國家科學基金會未來法案》美國參議院於2021年6月8日通過《2021年美國創新暨競爭法案》(the United States Innovation and Competition Act of 2021, USICA),是一項重大支出的全面性法案,批准了2500億美元於未來五年投入科學研究,旨在提振美國科技研發核心能力,並藉此因應中國的挑戰。 該法案分為六大部分: 《晶片製造法與5G等無線技術應用》(CHIPS Act and ORAN 5G Emergency Appropriations) 《無盡邊疆法》(Endless Frontier Act) 《2021戰略競爭法》(Strategic Competition Act of 2021) 《國土安全與政府事務委員會相關條款》(Homeland Security and Government Affairs Committee Provisions) 《2021回應中國挑戰法》(Meeting the China Challenge Act of 2021) 其他(如:教育與醫學研究競爭力與安全、司法委員會)。 其內容包括提撥520億美元支援半導體產業、15億美元支援5G供應鏈生產與技術研發,同時防範關鍵技術外洩,並透過與國內外民間、外國政府合作推動半導體、人工智慧、通訊、能源與生物技術等領域的基礎研究與創新,提供多種獎勵措施。 同月28日眾議院則提出自己版本以取代USICA並加以通過,分別是《美國國家科學基金會未來法案》(National Science Foundation for the Future Act)以及《美國能源部未來科學法案》(Department of Energy Science for the Future Act),預計在未來五年撥款1280億美元,供美國國家科學基金會(NSF)與能源部(DOE)提升研發能力。 參眾兩院意見分歧而需再展開協商,預計於今年9至10月間於兩院協商委員會通過。