為妥適管理中國幹細胞醫療產業,中國衛生部下令停止未經許可之幹細胞臨床研究和應用行為,並展開為期一年的幹細胞臨床研究和應用規範整頓工作。此期間分為「自查自糾」、「重新認證」和「規範管理」等階段。中國衛生部及國家食品藥品監督管理局(以下簡稱食品藥品監管局)辦公室於今年(2012年)1月6日發布一份名為《關於發展幹細胞臨床研究和應用自查自糾工作的通知》之部門規章,明白揭示於「自查自糾」階段各省、自治區及直轄市之衛生廳局及食品藥品監督管理局應如何辦理。 該通知中要求全國各級各類從事幹細胞臨床研究及應用之醫療機構及相關研究單位應依照《藥物臨床實驗質量管理規範》及《醫療技術臨床應用管理辦法》之規範進行自查自糾工作,如實總結並填寫幹細胞臨床研究和應用自查情況調查表,報告已完成或刻正進行之幹細胞臨床研究和應用活動;另外一方面,中國衛生部及食品藥品監管局及各省、自治區及直轄市將分別組成工作領導小組及工作組,制定自查自糾工作方案。針對尚未經批准之幹細胞臨床研究和應用,於通知文件中明白揭示應予停止;已經批准者,亦不得任意變更臨床試驗方案,或自行變更為醫療機構收費項目。值得注意者,為整頓對幹細胞臨床研究及應用之管理,並研擬符合國內需求之管理機制,直至今年7月1日前,相關主管機關將不受理任何申報項目。 中國截至目前為止,尚未針對幹細胞技術之臨床實驗或應用做成法規或政策,僅適用一般性藥品法規,相較於國際間先進國家屬相對鬆散。中國衛生部及食品藥品監管局於近日做成之通知文件顯示了中國政府開始對於幹細胞臨床實驗及應用之規範面向有所重視,針對其後續衍生之管理規範值得我們持續追蹤關切。
義大利發布最新全國性AI法案,預計設立醫療AI用平臺,並強化權利保護與病患福利壹、義大利最新AI法案簡介 義大利於2025年9月17日通過《人工智慧規範與政府授權》立法法案(Disposizioni e delega al Governo in materia di intelligenza artificiale,下稱1146‑B法案),為該國首次針對AI全面立法,亦為歐盟成員國內AI專法先驅。義大利將歐盟《人工智慧法》(AI Act,下稱AIA)框架轉化為國內法,並設立獨立窗口與歐盟對接。為確保落地效率並兼顧國家安全與資料治理,本法採「雙主管機關制」,由隸屬於總理府(Presidenza del Consiglio dei Ministri)之數位局(Agenzia per l’Italia Digitale,AgID)及國家網路安全局(Agenzia per la Cybersicurezza Nazionale,ACN)共同執行。AgID 負責AI技術標準、互通性與公共行政實務執行;ACN則負責資安韌性、事故通報與高風險AI安全性。 目前該法案已由參議院(Senato della Repubblica)審議並表決通過,2025年9月25日已載於義大利《官方公報》(Gazzetta Ufficiale),再經過15天緩衝期後,預計於2025年10月10日正式生效。然截至2025年10月27日為止,未有官方宣布該法案正式生效之證明,故法案是否依該版本內容正式施行仍待確認。其中醫療為AIA顯示之高風險領域之一,亦涉及資料隱私與病患權益等敏感法益,可謂本法落地機制中具代表性之政策面向,故本文特以醫療AI應用為分析重點。 貳、設立醫療AI應用平臺,輔助專業醫護及強化醫療服務取得 1146‑B法案第10條規定,將由義大利衛生服務局(Agenzia nazionale per i servizi sanitari regionali,AGENAS)主導設立該國家醫療AI應用平臺。該平臺定位為全國級資料治理與AI導入審查機制工具,主要功能為對醫療專業人員提供照護病患與臨床實踐時無法律約束力之建議,並對病患提供接觸社區醫療中心AI服務之管道與機會。該平臺僅得依「資料最小化原則」(dati strettamente necessary)蒐集以上醫療服務所需之必要資料,經向衛生部(Ministero della salute)、資料保護局(Garante per la protezione dei dati personali)及CAN徵詢意見後,由 AGENAS 負責資料處理,並經地方常設協調會議同意後,得以公告方式制定符合歐盟《一般資料法規》(General Data Protection Regulation,GDPR)之風險控管與敏感健康資料處理細則。 在確保資料安全合規後,法案強調對醫療保健之服務可及性(accesso ai servizi)進行改善,病人能透過此平臺更便利地接觸到社區醫療中心所提供之各類AI健康醫療服務,如診斷輔助、數位健康檔案調閱等,亦符合AIA強調AI發展應確保社會公益等權利之宗旨。 參、醫療用AI之限制與目標 法案第7條第5項規定AI僅能作為醫療決策輔助工具提供無拘束力之建議,重申前述醫療平臺相關規定;AI亦不得根據歧視性標準選擇或限制病人獲取醫療服務。病人享有「知情權」(diritto di essere informato),即有權知悉診療過程中是否使用有使用AI、使用方式(如僅為輔助)及其限制。針對健康資料之隱私處理方面,如病歷、基因資料、診斷紀錄等,要求醫用AI系統須持續監測、定期驗證與更新,以降低錯誤風險,維護病人健康安全,亦明文強調醫療AI之使用應以改善身心障礙者生活為目標。 四、總結 1146-B法案在醫療 AI 治理上,透過雙主管機關制平衡歐盟對接、技術發展與風險控管,符合AIA要求並避免權責衝突。建立由 AGENAS 主導的醫療 AI 應用平臺,在相關部門意見下運作,確保資料處理與服務推動合規與安全。病人權利方面,強調知情權、健康資料隱私與地方醫療AI普及,符合資料最小化與 GDPR 規範,展現義大利在醫療 AI 上兼顧創新、透明與權益保障之立場,往後應持續關注AGENAS釋出之關於該平臺使用之相關細則。 本文為資策會科法所創智中心完成之著作,非經同意或授權,不得為轉載、公開播送、公開傳輸、改作或重製等利用行為。 本文同步刊登於TIPS網站(https://www.tips.org.tw)
行動通信事業提供視訊服務之法律議題研究 新冠疫情下日本的數位經濟實踐之路新冠疫情下日本的數位經濟實踐之路 資訊工業策進會科技法律研究所 2021年3月9日 2021年2月,日本經濟團體聯合會(以下簡稱「經團聯」)發布其所舉辦有關「後疫情時代的數位政府與數位經濟」之座談會研討內容。該座談會於2020年12月舉辦,主旨為探討日本持續推進數位轉型與邁向社會5.0目標之過程中,面對新冠肺炎疫情之擴大,有何待解決之課題[1]。 壹、主要問題 數位轉型之層面所涉甚廣,本文認為可初步分為政府面、企業面及個人面。首先,就政府面而言,可探討如何建立e化政府並提供民眾便捷服務。其次,就個人面而言,則可能涉及消費者資料之蒐集與個人隱私資料保護之議題。最後,就企業面而言,則包含同種企業或不同企業間彼此蒐集到的資料共享、利用及分析。 針對企業間,擔任數位經濟推進委員長之篠原弘道於會中指出,數位轉型致力於價值創新,然而,日本業界間的數位轉型存在一極大的待突破問題,即是彼此對於資料資源之分享,尚存不信任甚且互相猜疑,此將不利於資料共享之發展。篠原弘道進一步說明,數位轉型以突破空間與距離之屏障為特色,欲突破此一屏障有賴於民間企業彼此間的合作與信賴,僅只單一企業的資料本身無法有效達至此目標,呼籲日本國內企業能協力合作,強化數位流通與交流[2]。 執此,如何促進企業間的資料分享,建立互相信賴的關係,突破業界間彼此藩籬,即為官方及民間所應努力的目標。 貳、具體案例 就民間而言,日本已有民間發起之企業共享平台,例如2018年5月至12月,三菱房地產於東京車站周邊之大丸有地區進行實驗性的OMY(大手町、丸之內到有樂町一帶的區域,日本俗稱Daimaruyu,簡稱OMY))資料活化計畫,驗證跨行業別企業間的資料利用分配與有效性,期盼能將資料應用於促進該地區的經濟成長、帶動觀光發展,甚至規劃災害措施[3]。 提供該計畫資料服務平台的富士通有限公司經理池田榮次指出,該計畫為了建立彼此信任感,而非一味地僅關注於資料的分析,進行了多達12間公司之間的對談,並也得到了一定的成效。 參、事件評析 有關企業面的資料活用,本文認為可大致分為「單一公司」、「同業種內」及「異業種間」三者。單一公司之資料活用,以壽司郎為例,其將每盤菜餚均以IC標籤管理,藉以蒐集每盤菜餚之新鮮度、銷售情況。從而,累積之資料即可運用於掌握消費者喜好,並避免食材之浪費等[4]。同業種內則涉及相同類別的企業間,藉由共享資料以減低成本。例如不同藥物研發公司,藉由樣本試驗共享,從而擴增實驗母群體之數量[5]。異業公司則可能由位於同一地區之不同企業所構成,例如前揭大丸有OMY資料活用計畫。 經團聯所提出之議題,乃著眼於同業種內及異業種間的跨公司間資料交流不易,因而提出民間企業積極跨越藩籬之呼籲。我國於推動資料共享平台等相關政策時,亦可思考政府端可提供何種支持及資源,以側面促進同種或不同種企業間之資料共享意願;同時,如何令企業理解到彼此間的合作協力,將是新興價值得以開拓的寶貴契機,亦是一大值得省思之重點。 參考連結 日本經濟團體聯合會2月份月刊特集〈後疫情時代的數位政府與數位經濟〉https://www.keidanren.or.jp/journal/monthly/2021/02_zadankai.pdf [1]〈ポストコロナのデジタルガバメントとデジタルエコノミー〉,《経団連月刊》,2月号期,(2021)。 [2]同前註,頁15。 [3]〈異業種データ活用で、東京のビジネスエリアが生まれ変わる【前編】〉,Fujitsu Journal,https://blog.global.fujitsu.com/jp/2019-07-26/01/,(最後瀏覽日:2021/03/09)。 [4]〈15社のビッグデータ活用事例から学ぶ、成果につながる活用の方法〉,https://liskul.com/wm_bd10-4861#3_IC(最後瀏覽日:2021/3/9)。 [5]独立行政法人情報処理推進機構,〈データ利活用における重要情報共有管理に関する調査 調査実施報告書〉,頁9(2018)。