世界衛生組織(World Health Organization, WHO)於2023年10月19日發布「人工智慧於健康領域之監管考量因素」(Regulatory considerations on artificial intelligence for health)文件,旨在協助各國有效監管健康領域之人工智慧,發揮其潛力同時最大限度地降低風險。本文件以下列六個領域概述健康人工智慧之監管考量因素: (1)文件化與透明度(Documentation and transparency) 開發者應預先規範(pre-specifying)以及明確記錄人工智慧系統(以下簡稱AI系統)之預期醫療目的與開發過程,如AI系統所欲解決之問題,以及資料集之選擇與利用、參考標準、參數、指標、於各開發階段與原始計畫之偏離及更新等事項,並建議以基於風險之方法(Risk-based approach),根據重要性之比例決定文件化之程度、以及AI系統之開發與確效紀錄之保持。 (2)風險管理與AI系統開發生命週期方法(Risk management and AI systems development lifecycle approaches) 開發者應在AI系統生命之所有階段,考慮整體產品生命週期方法(total product lifecycle approach),包括上市前開發管理、上市後監督與變更管理。此外,須考慮採用風險管理方法(risk management approach)來解決與AI系統相關之風險,如網路安全威脅與漏洞(vulnerabilities)、擬合不足(underfitting)、演算法偏差等。 (3)預期用途、分析及臨床確效(Intended use, and analytical and clinical validation) 開發者應考慮提供AI系統預期用途之透明化紀錄,將用於建構AI系統之訓練資料集組成(training dataset composition)之詳細資訊(包括大小、設定與族群、輸入與輸出資料及人口組成等)提供給使用者。此外,可考慮透過一獨立資料集(independent dataset)之外部分析確效(external analytical validation),展示訓練與測試資料以外之效能,並考慮將風險作為臨床確效之分級要求。最後,於AI系統之上市後監督與市場監督階段,可考慮進行一段期間密集之部署後監督(post-deployment monitoring)。 (4)資料品質(Data quality) 開發者應確認可用資料(available data)之品質,是否已足以支援AI系統之開發,且開發者應對AI系統進行嚴格之預發布評估(pre-release evaluations),以確保其不會放大訓練資料、演算法或系統設計其他元素中之偏差與錯誤等問題,且利害關係人還應考慮減輕與健康照護資料有關之品質問題與風險,並繼續努力創建資料生態系統,以促進優質資料來源之共享。 (5)隱私與資料保護(Privacy and data protection) 開發者於AI系統之設計與部署過程中,應考慮隱私與資料保護問題,並留意不同法規之適用範圍及差異,且於開發過程之早期,開發者即應充分瞭解適用之資料保護法規與隱私法規,並應確保開發過程符合或超過相關法規要求。 (6)參與及協作(Engagement and collaboration) 開發者於制定人工智慧創新與部署路線圖之期間,需考慮開發可近用且具有充足資訊之平台,以於適合與適當情況下促進利害關係人間之參與及協作;為加速人工智慧領域實務作法之進化,透過參與及協作來簡化人工智慧監管之監督流程即有必要。
國際能源總署發布CCUS(碳捕捉、利用及封存)法律與管制框架指引文件,協助各國建立相應法制國際能源總署(International Energy Agency, IEA)於2022年7月發布「CCUS法律與管制框架:IEA CCUS指引」(Legal and Regulatory Frameworks for CCUS: An IEA CCUS Handbook),協助各國建構碳捕捉、利用及封存(carbon capture, utilisation and storage, CCUS)相關法制。CCUS是有助於實現2050年全球淨零目標的重要除碳技術,可以捕捉空氣中或大型排放源裡的二氧化碳,將捕捉到的二氧化碳進行再利用,或將二氧化碳注入深層地質構造當中永久封存,藉此減緩全球氣候變遷。 建立健全的CCUS管制架構對於達成全球氣候目標至關重要,IEA於該報告中進一步探討25項法制優先議題,大致可依開發階段區分為資源評估(如二氧化碳及地下空隙空間所有權歸屬)、場址開發、施工、營運、開發、關閉與關閉後防止碳洩漏之法律問題。 由於CCUS在各國發展情況有所差異,IEA提出數種立法模式,例如(1)修改既有廢棄物法律規範以管理CCUS活動,但可能無法涵蓋地下權等其他議題;(2)修正部分既有廢棄物規範並結合環境法規既有之管理面向(如環評等)以形成管制框架;(3)在既有的礦產或石油開發規範建立相關二氧化碳注入與儲存等活動規範,將可包含地下權、開發許可程序、營運及關閉等完整生命週期之立法。(4)制定專法以涵蓋CCUS所有面向之活動。 在國際經驗中,立法者與管制機關於建構CCUS法律框架時,經常遭遇下列問題,包含:(1)CCUS在滿足國家能源需求方面的預期作用為何?(2)CCUS法規如何與現有規範進行調適?(3)是否已有可用的監管指導原則?(4)誰是主要的利害關係人?應如何與之進行溝通?(5)未來是否有審查或修正框架之相關程序?(6)監管機構是否有足夠資源監督CCUS活動?IEA建議釐清上述議題,逐步形塑CCUS管制架構。
英政府推動開源碼計劃由英國政府所資助成立的一項計畫,希望透過開放原始碼廠商目錄及程式碼資料庫的建立等措施,加速公家單位對開放原始碼軟體的採用。這項名為「開放原始碼學院」( Open Source Academy )的計畫,是由副首相辦公室( Office of the Deputy Prime Minister )的電子創新投資計畫所贊助,預計在本月內將正式宣佈。 參與該計畫的開放原始碼協會( Open Source Consortium )執行總監表示,英國的公家機關在開放原始碼的採用上落後於歐洲各國,而這項計畫將改變目前的現況。地方政府已經可以透過網站開始分享程式碼,例如「地方政府軟體協會」( Local Authority Software Consortium )的網站。這項計畫裡的其他專案還包括了政府機構的入口網站計畫,可藉以尋找開放原始碼供應商的資訊;以及開放原始碼顧問的專業鑑定模式。
特別301報告特別301報告(The Special 301 Report)是由美國貿易代表署(Office of the United States Trade Representative, USTR)公布之關於世界各國智慧財產權年度報告。1988年,美國國會修法增訂「特別301條款」,要求美國貿易代表署針對智慧產權保護或市場開放程度不足之國家,按嚴重程度於特別301報告中分列為「優先指定國家」(Priority Foreign Country)、「優先觀察名單」(Priority Watch List)和「一般觀察名單」(Watch List),並對「優先指定國家」啟動調查及協商談判。 美國每年對世界各國是否有效保護智慧財產權進行審查,並提出特別301報告。報告羅列範圍廣泛,包含: 世界各國智財權保護以及執法有效性; 網路銷售各種盜版及仿冒商標之商品情形; 世界各國貿易壁壘(market access barriers),例如貿易市場不透明、歧視性、或其他限制貿易的措施等,是否妨礙取得醫療保健(healthcare)或其他受智財權保護的資訊。 2019特別 301 報告(2019 Special 301 Report)於2019年4月公布。其中加拿大因簽署了《美墨加協定》(United States-Mexico-Canada Agreement, USMCA),實質改善加拿大智慧財產權環境,因而加拿大已從優先觀察名單轉為一般觀察名單。此外,中國連續15年被列入優先觀察名單,報告認為中國迫切需要進行基本的結構性改革,加強智財權保護。我國自1998年起被列入一般觀察名單,直至2009年除名,至今均未上榜,亦表美國肯認我國的智財保護發展。