過去十餘年來,美國商務部國家技術與標準局(The Commerce Department’s National Institute of Standards and Technology, NIST)推動的「先進技術計畫」(Advanced Technology Program, ATP),成功帶領美國中小企業透過技術的研發投入,創造美國經濟榮景。近年來面對變動劇烈的國際環境,為提升美國競爭力,美國總統於2007年8月9日簽署通過「意涵深遠地促進傑出技術、教育與科學之美國機會創造法」(The America Creating Opportunities To Meaningfully Promote Excellence In Technology, Education, And Science Act, 簡稱The America COMPETES Act)。 The America COMPETES Act特別授權NIST負責推動並執行一項新的研究補助計畫-技術創新計畫(Technology Innovation Program, TIP),企圖藉由在國家重點需求領域(critical national need areas),補助具有高風險性及高報酬的技術研究(high-risk, high-reward research),支持、促進並加速美國的創新。所謂「高風險、高報酬」之技術研究,指具有以下三項特質的技術研究:(1)研究可轉化成具體實益的潛在可行性,其成果將產生深遠及廣泛的影響;(2)研究計畫的進行係為了回應屬NIST技術職掌範圍內的重大國家需求;(3)研究的技術議題過於創新(too novel)或跨越甚多學科(spans too diverse a range of disciplines),以致傳統的專家審查程序無法適當地用來篩選此類計畫。至於「國家重點需求領域」,指問題觸及的面向極大,然須要被克服的社會挑戰(societal challenge)尚無因應之道而有賴國家予以關注,此等問題與社會挑戰可能可以透過高風險、高報酬研究之進行而予以解決者。 根據The America COMPETES Act,TIP將依研究實力競爭(on the basis of merit competitions)的原則,透過分攤成本的研究補助(cost-shared research grants)、合作協議(cooperative agreements)或契約(contracts)等方式,鼓勵業界單獨或共同(透過合資方式)提出技術創新的研究計畫申請以合資方式提出者,其主導者(lead entity)可為中小型企業或高等教育機構。TIP的補助對象限於設立於美國並在美國境內經營其主事務的中小型企業,外國企業參與TIP若符合美國經濟利益者,亦得獲得補助。TIP的補助金額不超過個別研究計畫總成本的半數,且只能用於補助直接成本,間接成本、收益或管理費則不在補助之列。總計對單一單位的補助以最長三年且不超過三百萬美元為限;對於合作研究則以最長五年且不過過九百萬美元為限。由於The America COMPETES Act僅就TIP的補助目的、補助對象、補助條件等作原則性規定,其運作細節仍有待NIST進一步設計,日前NIS已於2008年3月7日對外公布TIP執行規則草案,徵求各界意見。 隨著TIP的規劃與實際運作,過去由NIST所執行的ATP也將完成其歷史性任務,由TIP取代並宣告美國政府支持產業技術研發的新理念-亦即透過支持高風險、高報酬之技術研究,以回應美國的國家重點需求領域。 身為全球創新的龍頭,美國所提出的科技研發創新政策向為各國學習與參考借鏡的標竿,隨著The America COMPETES Act的通過,新法中關於美國產業創新的新機制規劃,已引起其他國家高度關注。印度科技與地球科學(Science & Technology and Earth Sciences)部長在The America COMPETES Act通過的一個月後即宣佈,印度政府將於短期內提出全面性的印度創新法案(Indian Innovation Act),藉以激勵印度的創新,而此項創新法案將會以美國的America COMPETES Act為參考模型。
政府採購雲端服務新興模式暨資安一體考量之研析 合成資料(synthetic data)「合成資料」(synthetic data)的出現,是為了保護原始資料所可能帶有的隱私資料或機敏資料,或是因法規或現實之限制而無法取得或利用研究所需資料的情況下,透過統計學方法、深度學習、或自然語言處理等方式,讓電腦以「模擬」方式生成研究所需之「合成資料」並進行後續研究跟利用,透過這個方法,資料科學家可以在無侵犯隱私的疑慮下,使合成資料所訓練出來的分類模型(classifiers)不會比原始資料所訓練出來的分類模型差。 在合成資料的生成技術當中,最熱門的研究為運用「生成對抗網路」(Generative Adversarial Network, GAN)形成合成資料(亦有其他生成合成資料之方法),生成對抗網路透過兩組類神經網路「生成網路」(generator)與辨識網路(discriminator)對於不同真偽目標值之反覆交錯訓練之結果,使其中一組類神經網路可生成與原始資料極度近似但又不完全一樣之資料,也就是具高度複雜性與擬真性而可供研究運用之「合成資料」。 英國國防科技實驗室(Defense Science and Technology Laboratory, DSTL)於2020年8月12日發布「合成資料」技術報告,此技術報告為DSTL委託英國航太系統公司(BAE Systems)的應用智慧實驗室(Applied Intelligence Labs, AI Labs)執行「後勤科技調查」(Logistics Technology Investigations, LTI)計畫下「資料科學與分析」主題的工作項目之一,探討在隱私考量下(privacy-preserving)「合成資料」當今技術發展情形,並提供評估技術之標準與方法。 技術報告中指出,資料的種類多元且面向廣泛,包含數字、分類資訊、文字與地理空間資訊等,針對不同資料種類所適用之生成技術均有所不同,也因此對於以監督式學習、非監督式學習或是統計學方法生成之「合成資料」需要採取不同的質化或量化方式進行技術評估;報告指出,目前尚未有一種可通用不同種類資料的合成資料生成技術或技術評估方法,建議應配合研究資料種類選取合適的生成技術與評估方法。