歐盟執委會於2009年4月23日發布再生能源指令(DIRECTIVE 2009/28/EC),目標在2020年達成20%的再生能源利用;並於2011年1月31日發布「再生能源:邁向2020目標」(Renewable Energy: Progressing towards the 2020 target)通訊報告,檢視歐洲再生能源產業概況及所面對的挑戰,透過與「歐洲及國家再生能源領域之財務檢視」(Review of European and national financing of renewable energy in accordance with Article 23(7) of Directive 2009/28/EC)、「運輸領域使用生質燃料及其他再生燃料的發展及技術評估」(Recent progress in developing renewable energy sources and technical evaluation of the use of biofuels and other renewable fuels in transport in accordance with Article 3 of Directive 2001/77/EC and Article 4(2) of Directive 2003/30/EC)及「生質燃料及生質燃油永續計畫報告」(Report on the operation of the mass balance verification method for the biofuels and bioliquids sustainability scheme in accordance with Article 18(2) of Directive 2009/28/EC)等三份報告的結合,瞭解再生能源領域發展所須的支出、確保其品質、運用最有效率及最具經濟效益的手段,架構歐洲再生能源利用之2020年目標。
為達此一目標,各會員國自行採取相關措施加以推動,每年投入的資金呈倍數的成長;然在2020年之後,卻未見相關政策規劃。為持續發展再生能源,執委會於2012年6月6日發布「再生能源:歐洲能源市場的重要角色」(Renewable Energy: a major player in the European energy market)通訊報告,呼籲各會員國在相關計畫的建立與改革採取更協調一致的措施,提升會員國間再生能源的交易,並探討2020年之後再生能源的發展框架。此一通訊報告包含兩部分:第一、為達2020年的再生能源發展目標,指出四個須加速推動的領域;第二、開始思考2020年後之規劃框架。
針對應加速推動以達成2020年發展目標的四大領域,包括(1)能源市場、(2)支援計畫(support schemes)、(3)合作機制、(4)地中海區能源合作計畫。歐盟執委會堅持達成境內能源市場的整合,並認為有必要提供投資獎勵,以順利進行。對於相關支援計畫,應鼓勵降低成本並避免過度補貼;由於支援計畫多由各國政府主導,而各國可能有缺乏透明度、突然終止、甚至補助差異,造成市場運作模式的阻礙,因此執委會呼籲透過跨國的合作來解決。此外,執委會鼓勵增加合作機制,使會員國間能透過再生能源的交易、降低成本,以達成再生能源利用目標。針對地中海區的能源合作計畫,執委會建議改善其管理框架,並著重於整合馬格里布地區(Maghreb)的市場,將有助於大規模投資,進口再生能源電力。
針對2020年後之發展,則應兼顧創新與降低成本,促進對再生能源的投資。依據歐洲「2050能源路徑圖」(Energy Roadmap 2050)之規劃,開始探討邁向2030的發展策略,主要仍以溫室氣體排放、再生能源及能源效率為政策目標。執委會強調,儘速確定2030年的發展規劃至關重要,此規劃並應使再生能源業者在能源市場上提升其競爭力。
人工智慧(Artificial Intelligence, AI)的應用,已逐漸滲透到日常生活各領域中。為提升AI運用之效益,減少AI對個人與社會帶來之負面衝擊,英國資訊委員辦公室(Information Commissioner’s Office, ICO)於2019年3月提出「AI稽核框架」(Auditing Framework for Artificial Intelligence),作為確保AI應用合乎規範要求的方法論,並藉機引導公務機關和企業組織,評估與管理AI應用對資料保護之風險,進而建構一個可信賴的AI應用環境。 AI稽核框架主要由二大面向所構成—「治理與可歸責性」(governance and accountability)以及「AI特定風險領域」(AI-specific risk areas)。「治理與可歸責性」面向,係就公務機關和企業組織,應採取措施以遵循資料保護規範要求的角度切入,提出八項稽核重點,包括:風險偏好(risk appetite)、設計階段納入資料保護及透過預設保護資料(data protection by design and by default)、領導管理與監督(leadership management and oversight)、政策與程序(policies and procedures)、管理與通報架構(management and reporting structures)、文書作業與稽核紀錄(documentation and audit trails)、遵循與確保能力(compliance and assurance capabilities)、教育訓練與意識(training and awareness)。 「AI特定風險領域」面向,則是ICO特別針對AI,盤點下列八項潛在的資料保護風險,作為風險管理之關注重點: 一、 資料側寫之公平性與透明性(fairness and transparency in profiling); 二、 準確性(accuracy):包含AI開發過程中資料使用之準確性,以及應用AI所衍生資料之準確性; 三、 完全自動化決策模型(fully automated decision making models):涉及人類介入AI決策之程度,歐盟一般資料保護規則(General Data Protection Regulation, GDPR)原則上禁止無人為介入的單純自動化決策; 四、 安全性與網路(security and cyber):包括AI測試、委外處理資料、資料重新識別等風險; 五、 權衡(trade-offs):不同規範原則之間的取捨,如隱私保護與資料準確性; 六、 資料最少化與目的限制(data minimization and purpose limitation); 七、 資料當事人之權利行使(exercise of rights); 八、 對廣泛公共利益和權利之衝擊(impact on broader public interests and rights)。 ICO將持續就前述AI特定風險領域,進行更深入的分析,並開放公眾討論,未來亦將提供相關技術和組織上之控制措施,供公務機關及企業組織進行稽核實務時之參考。
合成資料(synthetic data)「合成資料」(synthetic data)的出現,是為了保護原始資料所可能帶有的隱私資料或機敏資料,或是因法規或現實之限制而無法取得或利用研究所需資料的情況下,透過統計學方法、深度學習、或自然語言處理等方式,讓電腦以「模擬」方式生成研究所需之「合成資料」並進行後續研究跟利用,透過這個方法,資料科學家可以在無侵犯隱私的疑慮下,使合成資料所訓練出來的分類模型(classifiers)不會比原始資料所訓練出來的分類模型差。 在合成資料的生成技術當中,最熱門的研究為運用「生成對抗網路」(Generative Adversarial Network, GAN)形成合成資料(亦有其他生成合成資料之方法),生成對抗網路透過兩組類神經網路「生成網路」(generator)與辨識網路(discriminator)對於不同真偽目標值之反覆交錯訓練之結果,使其中一組類神經網路可生成與原始資料極度近似但又不完全一樣之資料,也就是具高度複雜性與擬真性而可供研究運用之「合成資料」。 英國國防科技實驗室(Defense Science and Technology Laboratory, DSTL)於2020年8月12日發布「合成資料」技術報告,此技術報告為DSTL委託英國航太系統公司(BAE Systems)的應用智慧實驗室(Applied Intelligence Labs, AI Labs)執行「後勤科技調查」(Logistics Technology Investigations, LTI)計畫下「資料科學與分析」主題的工作項目之一,探討在隱私考量下(privacy-preserving)「合成資料」當今技術發展情形,並提供評估技術之標準與方法。 技術報告中指出,資料的種類多元且面向廣泛,包含數字、分類資訊、文字與地理空間資訊等,針對不同資料種類所適用之生成技術均有所不同,也因此對於以監督式學習、非監督式學習或是統計學方法生成之「合成資料」需要採取不同的質化或量化方式進行技術評估;報告指出,目前尚未有一種可通用不同種類資料的合成資料生成技術或技術評估方法,建議應配合研究資料種類選取合適的生成技術與評估方法。
美國衛生部門公布個人健康資訊外洩責任實施綱領美國健康與人類服務部(Secretary of Health and Human Services;以下簡稱HHS),於2009年4月17日公布「個人健康資訊外洩通知責任實施綱領」(Guidance Specifying the Technologies and Methodologies That Render Protected Health Information Unusable, Unreadable, or Indecipherable to Unauthorized Individuals for Purposes of the Breach Notification Requirements under Section 13402 of Title XIII (Health Information Technology for Economic and Clinical Health Act) of the American Recovery and Reinvestment Act of 2009; Request for Information;以下簡稱本綱領)。本綱領為美國迄今唯一聯盟層級之資料外洩通知責任實施細則,並可望對美國迄今四十餘州之個資外洩通知責任法制,產生重大影響。 本綱領之訂定法源,係依據美國國會於2009年2月17日通過之經濟與臨床健康資訊科技法(Health Information Technology for Economic and Clinical Health Act;以下簡稱HITECH),HITECH並屬於2009年「美國經濟復甦暨再投資法」(America Recovery and Reinvestment Act;簡稱ARRA)之部分內容。 HITECH將個人健康資訊外洩通知責任的適用主體,從「擁有」健康資訊之機構或組織,進一步擴大至任何「接觸、維護、保留、修改、紀錄、儲存、消除,或以其他任何形式持有、使用或揭露安全性不足之健康資訊」的機構或組織。此外,HITECH並規定具體之資料外洩通知方法,即必需向當事人(資訊主體)以「即時」(獲知外洩事件後60天內)、「適當」(書面、或輔以電話、網站公告形式)之方式通知。不過,由於通知之範圍僅限於發生「安全性不足之健康資訊」外洩,故對於「安全性不足」之定義,HITECH即交由HHS制定相關施行細則規範。 HHS本次通過之實施辦法,將「安全」之資料定義「無法為第三人使用或辨識」,至於何謂無法使用或辨識,本綱領明定有兩種情形,一是資料透過適當之加密,使其即使外洩亦無法為他人辨識,另一則是該外洩資訊之儲存媒介(書面或電子形式)已被收回銷毀,故他人無法再辨識內容。 值得注意的是,有異於美國各州法對於加密標準之不明確態度,本綱領已指明特定之技術標準,方為其認可之「經適當加密」,其認可清單包含國家標準與技術研究院(National Institute of Standards and Technology)公布之Special Publication 800-111,與聯邦資訊處理標準140-2。換言之,此次加密標準之公布,已為相關業者提供一可能之「安全港」保護,使業者倘不幸遭遇資料外洩事件,得主張資料已施行適當之加密保護,即無需承擔龐大外洩通知成本之衡平規定。