美國國家標準暨技術研究院(National Institute of Standards and Technology, NIST)為管理人工智慧對於個人、組織以及社會所帶來之風險,於2021年7月29日提出將建立「人工智慧風險管理框架」(Artificial Intelligence Risk Management Framework, AI RMF)之規畫並徵詢公眾意見,截止日為9月15日,並預計於10月發布正式報告。 依照NIST說明,公眾所建議之人工智慧風險管理框架,可促進人工智慧之可信賴性,其中包含如何應對並解決人工智慧於設計、發展及使用過程中所遭遇之「精確度」(accuracy)、「可解釋性」(explainability)、「偏見」(bias)等議題。此外,上開管理框架預計為非強制性、供企業自願性使用於人工智慧設計、發展、使用、衡量及評估之人工智慧標準。 依現有公眾意見徵詢結果,其中DeepMind公司建議於人工智慧設計初期,必須預先構思整體系統之假設是否符合真正社會因果關係。舉例言之,當設計一套可預測民眾健保需求程度之系統時,如輸入參數僅考量民眾於醫療上的花費,將使僅有可負擔較高醫療費用之民眾被歸類為健保需求程度較高者,從而導致健保制度排擠經濟負擔程度較差之公民,故在設計系統時,應從預先設定之假設事實反面(counter-factual)思考並驗證是否會產生誤差或公平性之問題(例如預先思考並驗證「醫療費用支出較低之民眾是否即可被正確歸類為健保需求度低之民眾」)。惟進行上述驗證需要大量社會資料,因此DeepMind也建議NIST應建立相關機制,使這些社會資料可以被蒐集、使用。 此外,亦有民眾建議管理框架應有明確之衡量方法以及數值指標,以供工程界遵循。同時鑒於人工智慧發展極為快速,未來可能有不同於以往之人工智慧類型出現,故亦建議NIST應思考如何在「建構一套完整且詳細之人工智慧治理框架」與「保持人工智慧治理框架之彈性與靈活性」之間取得平衡。 最後,目前也有許多徵詢意見指出,許多人工智慧治理之目標會相互衝突。舉例言之,當NIST要求人工智慧系統應符合可解釋性,則人工智慧公司勢必需要經常抽取人工智慧系統中之「數據軌跡」(audit logs),惟數據軌跡可能被認為是使用者之個人資料,因此如何平衡或完善不同治理框架下之目標,為未來應持續關注之議題。
當被授權人挑戰授權專利之有效性--美國法院對上訴條件「受有損害」的認定標準2021年4月7日美國聯邦巡迴上訴法院(United States Court of Appeals for the Federal Circuit,下稱CAFC)發布了關於Apple Inc. v. Qualcomm Inc.的裁決,指出因Apple Inc.(下稱Apple)未能滿足提起上訴的資格「證明授權專利的有效性會對授權協議義務產生具體的損害影響」,故駁回其對於專利審理暨訴願委員會(Patent Trial and Appeal Board ,下稱PTAB)做出之US7,844,037與US8,683,362專利(下稱爭議專利)有效性決定的上訴。 此案爭議專利是由Qualcomm Inc.(下稱Qualcomm)持有,Qualcomm曾以Apple侵犯爭議專利提起侵權訴訟,Apple隨後在PTAB對爭議專利提出多方複審程序(Inter partes review,下稱IPR),以挑戰爭議專利的有效性,但最後沒有成功。隨後,Apple與Qualcomm達成專利侵權和解協議並簽署了授權契約,授權的專利組合中也包含爭議專利。 在專利侵權和解協議後,Apple還是針對IPR的結果向CAFC提起上訴。由於提起上訴條件之一是上訴人需有受到損害的事實,Apple以其需持續支付權利金的義務主張有受到損害的事實。但CAFC認為,Apple並沒有證明若爭議專利被視為無效,則根據其與Qualcomm授權契約所應承擔的付款義務會發生改變。因此,法院裁定Apple不符合對IPR的結果提起上訴的資格。 由上述可知,作為專利被授權人,若要在授權契約條件下對爭議專利有效性決定提上訴,需要設法證明爭議專利的有效性會對授權協議義務產生具體的影響,否則被授權人將難以因其具有實質的損害從而讓法院啟動上訴作業。
美國聯邦交易委員會提出巨量資料報告,關注商業應用之潛在歧視性效果美國聯邦交易委員會(Federal Trade Commission, FTC)於2016年1月6日公布「巨量資料之商業應用」報告(Big Data: A Tool for Inclusion or Exclusion? Understanding the Issues),報告中歸納提出可供企業進一步思考之數項議題,期能藉此有助於企業確保巨量資料分析應用之正當合法性,並避免產生排除性或歧視性之對待,但同時亦能透過巨量資料之分析應用為消費者帶來最大的利益。FTC主委Edith Ramirez表示,巨量資料之重要性於商業之各領域均愈發凸顯,其對於消費者之潛在利益自是不言可喻,然企業仍應確保巨量資料之利用不會產生傷害消費者之結果。 「巨量資料之商業應用」報告經徵集公共意見與彙整相關研究後,聚焦於巨量資料生命週期的後端,亦即巨量資料被蒐集與分析之後的利用。報告中強調數種能幫助弱勢群體的巨量資料創新利用方式,例如依病患之生理特性量身訂作並提供醫療照護,或是新的消費者信用評等方式。報告同時也指出可能因為偏見或資料錯誤帶來的風險,像是信用卡發卡銀行降低某人信用額度的原因並非基於該持卡人之消費與還款記錄,而是與該持卡人被歸為「同一類型」之消費者所共同擁有之記錄與特徵。其次,報告對巨量資料於商業領域之利用可能涉及之法規進行了初步盤點,包括公平信用報告法(Fair Credit Reporting Act, FCRA)、與機會平等相關之聯邦立法—像是基因資訊平等法(Genetic Information Nondiscrimination Act, GINA)、以及聯邦交易委員會法,報告也列出7項預擬提問,協助企業因應巨量資料商業利用之法令遵循問題。
歐洲議會於2022年初通過數位服務法(DSA)歐洲議會(European Parliament)於2022年1月20日通過數位服務法(Digital Services Act),該法旨在監管線上服務提供者(online service providers),為線上服務接受者提供更安全線上空間,包含要求線上平臺應(1)打擊線上非法服務或內容;(2)提供通知並刪除/下架(notice and action)機制,不得有差別性或任意性對待;(3)提供無廣告追蹤(tracking-free ad)選項,和禁止將未成年人資料用於定向廣告(targeting advertising);(4)對於線上平臺課以行政責任,如:超大型線上平臺(very large online platforms, VLOP)若故意或過失違反義務,最高罰鍰可被處以前一會計年度總營業額6%,或按日連續處罰最高可處前一會計年度平均每日營業額5%。若可能致危害生命或人身安全,主管機關亦可勒令其停止提供服務;(5)強制性風險評估和提高演算法透明度,以打擊有害內容(harmful content)和虛假資訊。 數位服務法所規範的服務主要有四種類型,四種服務提供者負擔累計義務(cumulative obligation),其中VLOP被賦予最多責任,因其對於散布非法內容並造成社會危害具有特殊風險,須具備風險減緩、獨立稽核等機制。相關服務定義如下: (1)中介服務提供(Intermediary Service):提供網路基礎建設服務。 (2)託管服務提供(hosting service):由服務接受者提供資訊並應其要求提供資訊儲存服務,例如:雲端儲存服務、網站主機代管等服務。 (3)線上平臺(online platform):包含類型線上市集、應用程式商店、以及社群媒體平台。 (4)VLOP:每月平均歐盟境內活躍用戶達4500萬以上或人口10%之線上平臺。例如:Google、Facebook及YouTube。 此數位服務法草案最早在2019年年底提出,歐洲議會於今年投票通過後,尚待歐盟理事會(Council of the European Union)審查同意後,此法即正式發布施行。歐洲議會於審查所提出之修正建議,除針對前述五大重點外,還特別強調對於微中小型企業(MSMES)相關義務的免除,以及禁止線上平臺使用欺瞞(deceiving)或助推(nudging)方法影響消費者購物選擇。