美國能源部加強推動智慧電網之網路安全,並提供自我評估調查工具

  美國能源部於今年(2012)6月28日發布一套新的網路安全自我評估調查工具(Cybersecurity Self-Evaluation Survey Tool),以強化保護公共事業的業者避免遭受網路安全的攻擊,這套工具也是能源部為施行其於5月31日公布的網路安全能力成熟度模型(Cybersecurity Capability Maturity Model)的一部分,同時此模型的發展也是為了支持白宮的電力網路安全風險管理成熟度倡議( Electricity Subsector Cybersecurity Risk Management Maturity Initiative)。

 

  網路安全成熟度模型的發展乃係由能源部與國土安全部共同領導,並且與業界、其他聯邦機構以及卡內基大學軟體工程研究所合作進行,該模型的四個目標在於:加強電力網路安全能力、使相關業者可以有效並持續設立網路安全能力的基準、分享知識、解決的方法與其他相關的參考資料、使業者得以排定對於改善網路安全的行動以及投資上的優先順序,以幫助業者發展並且評估他們的網路安全能力。

 

  此次發佈的評估工具則是以問卷的方式,著重在情境式的認知與威脅及弱點的管理,而後能源部將針對自願提供評估結果的業者提供個案報告,幫助業者改善其網路安全能力,同時,能源部也建議業者,建立優先行動方案,以解決差距的問題,並且定期評估追蹤網路安全能力的改善進度,能源部也提醒業者注意網路威脅環境上與技術上的改變,以進行應變的評估。

相關連結
相關附件
※ 美國能源部加強推動智慧電網之網路安全,並提供自我評估調查工具, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=5855&no=55&tp=1 (最後瀏覽日:2025/12/25)
引註此篇文章
你可能還會想看
日本經產省發布《促進資安攻擊受害資訊共享檢討會最終報告書》,以加速資安情資共享

日本經濟產業省(下稱經產省)於2023年11月22日發布《促進資安攻擊受害資訊共享檢討會最終報告書》(サイバー攻撃による被害に関する情報共有の促進に向けた検討会の最終報告書),主張共享資安攻擊受害資訊,掌握資安攻擊全貌,防止損害範圍擴大。經產省提出具體建議如下: 1.促進各專門組織間之資訊共享:藉由專門組織間的資訊共享,及早採取適當因應措施,避免損害持續擴大,並降低受害成本。所謂專門組織包含資安廠商、資安監控中心(Security Operation Center, SOC)營運商、防毒廠商,與依法令成立從事資安事件諮詢與分析之非營利組織,例如:一般社團法人日本電腦網路危機處理暨協調中心(一般社団法人JPCERTコーディネーションセンター),以及一般財團法人日本網路犯罪對策中心(一般財団法人日本サイバー犯罪対策センター)等。 2.共享無從識別受害組織之資訊:為加快資訊共享,經產省建議將資料去識別化至無從識別受害組織之程度,即可不經受害組織同意而共享資訊。 3.提出《攻擊技術資訊處理與活用指引草案》(攻撃技術情報の取扱い・活用手引き(案)):為提升專門組織共享資訊成效,經產省於指引中彙整受害組織資料去識別化作法,以及各專門組織間共享攻擊技術資訊之具體策略。 4.於保密協議中加入免責條款:經產省建議於受害組織與專門組織簽訂之保密協議中,加入專門組織免責條款,使專門組織具有利用或揭露攻擊技術資訊裁量權,對於利用或揭露資訊,致生受害組織被識別等損害時,非因故意或重大過失不須負擔法律責任,以利推動資訊共享。

人權組織向法國最高行政法院提交申訴,要求政府停止使用歧視性演算法

.Pindent{text-indent: 2em;} .Noindent{margin-left: 2em;} .NoPindent{text-indent: 2em; margin-left: 2em;} .No2indent{margin-left: 3em;} .No2Pindent{text-indent: 2em; margin-left: 3em} .No3indent{margin-left: 4em;} .No3Pindent{text-indent: 2em; margin-left: 4em} 國際特赦組織(Amnesty International)與法國數位隱私權倡議團體La Quadrature du Net(LQDN)等組織於2024年10月15日向法國最高行政法院提交申訴,要求停止法國國家家庭津貼基金機構(Caisse nationale des allocations familiales,CNAF)所使用的歧視性風險評分演算法系統。 CNAF自2010年起即慣於使用此系統識別可能進行福利金詐欺的對象,該系統演算法對獲取家庭與住房補助的對象進行0至1之間的風險評分,分數越接近1即越可能被列入清單並受調查,政府當局並宣稱此系統將有助於提升辨識詐欺與錯誤的效率。 LQDN取得該系統的原始碼,並揭露其帶有歧視性質。該等組織說明,CNAF所使用的評分演算法自始即對社會邊緣群體如身心障礙者、單親家長,與低收入、失業、居住於弱勢地區等貧困者表現出懷疑態度,且可能蒐集與系統原先目的不相稱的資訊量,這樣的方向直接違背了人權標準,侵犯平等、非歧視與隱私等權利。 依據歐盟《人工智慧法》(Artificial Intelligence Act,下稱AIA),有兩部分規定: 1. 用於公機關評估自然人是否有資格獲得基本社會福利或服務,以及是否授予、減少、撤銷或收回此類服務的人工智慧系統;以及用於評估自然人信用或建立信用評分的人工智慧系統,應被視為高風險系統。 2. 由公機關或私人對自然人進行社會評分之人工智慧系統可能導致歧視性結果並排除特定群體,從此類人工智慧總結的社會分數可能導致自然人或其群體遭受不當連結或程度不相稱的不利待遇。因此應禁止涉及此類不可接受的評分方式,並可能導致不當結果的人工智慧系統。 然而,AIA並未針對「社會評分系統」明確定義其內涵、組成,因此人權組織同時呼籲,歐盟立法者應針對相關禁令提供具體解釋,惟無論CNAF所使用的系統為何種類型,因其所具有的歧視性,公機關皆應立即停止使用並審視其具有偏見的實務做法。

IBM同意中國大陸政府檢視部份產品原始碼

  近年來中國大陸政府為了資安考量,制訂相關法規要求外國科技公司進入中國大陸市場時必須提供程式原始碼,避免他方非法(例如利用病毒)透過電腦軟體進入中國大陸的系統和資料。   IBM公司近日發表聲明,允許特定國家在其嚴格的監控下,檢視其部份產品的軟體原始碼,確保產品沒有資訊安全的漏洞,中國大陸也在這些特定國家之列。這是美國重要的科技大廠,首次公開同意遵守中國大陸政府對於外國技術的資訊安全審查,然而此舉讓美國政府與其他矽谷科技公司頗有微詞。   IBM開放檢視其程式碼的對象為中華人民共和國工業與信息化部。IBM在聲明中表示,原始碼的檢視必須在IBM公司內,於無網路連線並受IBM安全應用程式監控的環境下進行,並保證這些軟體原始碼不會被釋出、被複製,或以任何方式改作。在嚴格的環境和時間限制下,IBM不會讓中國大陸政府有機會接觸其客戶資料庫,也不會涉及後門程式(back door)。至於會提供哪些產品的原始碼檢視,或中國大陸官方可檢視的時間有多長,IBM尚無明確說明。事實上IBM並非唯一提供程式碼的科技公司,微軟公司早在2003年即允許中國大陸、俄國、英國等國家檢視微軟Windows部分產品的原始碼。   有市場分析公司指出,IBM為降低智慧財產權被複製的風險,所釋出的原始碼可能只涉及基本功能,不包含專有的演算碼,且像IBM此類的公司,應該擁有閉源軟體(closed-source)或特別的軟體以嚴密地維護底層的原始碼,避免中國大陸政府藉由檢視原始碼執行反向工程(Reverse Engineering)。   IBM公司願意提供中國大陸政府檢視部分產品原始碼,目的在於展示其產品安全性,試圖擴展IBM在中國大陸的商業版圖。IBM旗下的雲端運算平台Bluemis未來將與中國大陸的數據中心服務公司—北京世紀互聯寬帶數據中心有限公司合作。該公司同時也是微軟在中國大陸的合作夥伴。

歐洲專利局發布人工智慧與機器學習專利審查指南正式生效

  歐洲專利局(European Patent Office, 下稱EPO)於2018年11月1日發佈新版專利審查指南已正式生效。此次新版的焦點為Part G, Chapter II, 3.3.1關於人工智慧(Artificial Intelligence, AI)與機器學習(Machine Learning, ML)的可專利性審查細則。   在新版審查指南Part G, Chapter II, 3.3中指出數學方法本身為法定不予專利事項,然而人工智慧和機器學習是利用運算模型和演算法來進行分類、聚類、迴歸、降維等發明,例如:神經網路、遺傳演算法、支援向量機(Support Vector Machines, SVM)、K-Means演算法、核迴歸和判別分析,不論它們是否能夠藉由數據加以訓練,此類運算模型和演算法本身,因具有抽象的數學性質而不具專利適格性。   其中,EPO亦針對人工智慧和機器學習相關應用舉例下列特殊情形,說明可否具備發明技術特徵:   (一)可能具技術性 在心臟監測儀器運用神經網路辨別異常心跳,此種技術為具有技術貢獻。 基於低階特徵(例如:影像邊緣、像素數值)的數位影像、影片、音頻或語言訊號分類,屬於分類演算法的技術應用。   (二)可能不具技術性 根據文字內容進行分類,本身不具技術目的,而僅是語言學的目的(T 1358/09) 對抽象數據或電信網路數據紀錄進行分類,但未說明所產生分類的技術用途,亦被認定本身不具技術目的,即使該分類演算法的數據價值高(例如:穩健性)(T 1784/06)。   在新版審查指南中亦指出,當分類方法用於技術目的,其產生之訓練集(training set)和訓練分類器(training the classifier)的步驟,則能被視為發明的技術特徵。   近年來,人工智慧技術的應用分佈在我們的生活中,無論是自駕車、新藥開發、語音辨識、醫療診斷等,隨著人工智慧和機器學習技術快速發展,新版的審查指南將為此技術訂定可專利性標準,EPO未來要如何評判人工智慧和機器學習相關技術,將可透過申請案之審查結果持續進行關注。 「本文同步刊登於TIPS網站(https://www.tips.org.tw )」

TOP