「地方創生」之概念源於2014年日本安倍內閣所提出的地方治理新模式,又稱「激勵地方小經濟圈再生」政策(ちほうそうせい),其施政重點主要為解決三大問題:人口高齡化和負成長造成的勞動力人口的減少、人口過度集中都會區(尤其是東京)以及地方人口外流以致人力資源不足而使地方經濟發展面臨困境之情形。 自2008年以來,日本人口開始加劇下降,導致消費和經濟實力下降,成為日本經濟和社會的沉重負擔。為解決該情況,國家與地方合作對地區發展持續落實、檢討、修正相關政策。政策原則為自立性、未來性、區域性、直接性、結果導向;政策內容亦稱為地方創生三支箭(地方創生版・三本の矢),包含: 資訊支援(情報支援):推廣區域經濟分析系統(Regional Economy Society Analyzing System, RESAS),使各地區能對產業、人口、社會進行必要的數據分析,並能依據分析結果解決地方問題。 人才支援:維持地方生活在地化、就學在地化、服務在地化,並派駐國家公務員至小規模的地方政府機關,輔佐地方機關首長。 財政支援:補助地方創生政策執行、補助地方基礎建設、施行地方稅制改革。 地方創生之目標,在於鼓勵日本國民維持在當地工作,為地區創造新人潮,並使地方年輕人能在家鄉安心結婚育兒,此外,讓各地結合地理及人文特色,發展出最適合地方的產業,中央和地方持續合作以實現地方政府的永續發展目標。
從美國政府責任署建議國防部應改善其處理智慧財產的方式初探美國國防部之智財管理從美國政府責任署建議國防部應改善其處理智慧財產的方式初探美國國防部之智財管理 資訊工業策進會科技法律研究所 2022年2月15日 根據美國政府責任署(U.S. Government Accountability Office,下稱GOA)於去(2021)年12月發布的報告指出,美國國防部(U.S. Department of Defense,下稱DOD)對智慧財產的管理能力不足,可能降低任務準備程度並導致維運軍武的成本飆升[1]。本文將簡介GOA報告的發現,聚焦於DOD的智財管理情況,藉此一窺美國國防部的智財管理模式。 壹、事件摘要 美國國會於2018年通過《國防授權法案》(National Defense Authorization Act,簡稱NDAA),裁示DOD建立智財取得及授權政策,DOD據此訂定其智財指令、規劃智財權責單位、人員及相關培訓機制,嗣後國會於2021年委請GAO檢視DOD之智財指令及其執行情況。 貳、重點說明 一、DOD的智財指令 DOD依據以下智財相關法規,設定其智財指令,如:使小型企業、大學和其他非營利組織可保留其發明之專利權的《拜杜法》(Bayh-Dole Act)[2]、授予無論規模大小所有聯邦締約方全部或部分由聯邦資金所獲得的專利權之12,591號行政命令[3],以及要求DOD應訂定相關規範以解決和締約方間技術資料的相關權利之《國防採購改革法案》(Defense Procurement Reform Act)[4]等,並強調六項核心原則[5]: 1.將智慧財產權規劃整合到採購策略中,以考量對競爭力和可負擔性的長期影響。 2.確保採購專業人員具備履行公務所需的相關智財知識,以支援智財採購規劃期間內進行關鍵的跨職能協調。 3.對智財可交付成果和相關授權進行特別協商,相較標準授權能更有效地平衡DOD和產業界間的利益。 4.就預期智財和維運目標與產業界進行明確有效的溝通。 5.尊重和保護私部門和政府資助的智慧財產權。 6.政府必須確保締約方所交付之智財成果和有相應的授權。 二、GAO檢視DOD之智財指令執行結果 應國會要求,GAO對DOD的智財指令進行通盤檢視,並對智財權責單位、人員及負責培訓之機構展開調查,訪談相關人員指令的實際執行情況,其檢視結果如下: (一)DOD的智財指令不足以促進其取得智財的製程細節或處理資料權利之能力 DOD智財指令雖整合取得、授權智財的相關法規和指引等要求,並強調其核心原則,然該指令和DOD其它相關的內部指令仍未有更明確的內容可解決取得細部製程或處理資料權利的問題。DOD通常會為其新銳軍武器系統-包含電腦軟體、技術資料、用戶手冊等取得或註冊智財權,而DOD智財指令所指的技術資料,是包括任何科學或技術性質的記錄資訊,如:產品設計或維護資料和電腦軟體檔案(含:執行程式碼、開源碼、程式碼清單、設計細節、流程、流程圖等);但常未同步取得用於運行和維護武器系統的智財,如:細部製程或技術資料等[6],倘若未及早取得或獲得相關授權,可能影響軍武系統的操作和維護,從而影響武器的競爭力,並增加管理成本[7]。 實際上,GAO已接獲因技術資料取得問題而對任務有不良影響的報告:2021年7月F-35計劃因維修供應商取得的技術資料不足以滿足維護需求,使關鍵的引擎維修時間比預期的更久;2020年3月部分海軍艦艇計劃的維護作業也因缺乏技術資料出問題,而上述情況若在計畫前期就確認包含技術資料和細部製程等所需智財,並在採購過程中及早規劃取得,可因此節省後續衍生的數十億美元維護成本[8]。 (二)DOD尚未為智財人員訂定完善的策略、人員配置規劃和投注足夠的資源,以充分履行智財指令所規定的廣泛職責 根據GOA的調查與訪談相關人員,智財人員在以下情況都面臨不確定性: 1.資金和人員配置 DOD目前計劃在2023財會年度前,為智財主任及其在國防部長辦公室(Office of the Secretary of Defense,下稱OSD)的團隊提供五個職位的資金,但其中四個為臨時職位,這可能在招聘人才的過程中造成反效果,不利於未來的人員配置。 2.連結其他計劃專家支援不足之處 OSD的智財人員希望DOD中其他計畫的智財專家庫能提供支援,協助訂定智財策略並與承包商進行談判等事宜,但DOD尚未針對 OSD智財團隊將如何和其他專家合作提出具體作法。 3.專業知識 DOD的智財指令指出智財人員應該具備:採購、擬定契約、工程學、法律、後勤、財務分析以及估值等領域的專業知識,但受訪談的人員表示,該部門目前在智財權估值和財務分析這兩個關鍵領域仍有不足,仍須進行補強[9]。 (三)智財培訓涵蓋多項活動但未安排優先順序,且未具體確定哪些人員應該接受培訓 DOD的智財培訓由其設立的美國國防武獲大學(Defense Acquisition University,又譯為國防軍需大學,下稱 DAU)執行,該大學專為國防相關之政府人員、承包商提供採購、技術和後勤等專業培訓[10]。為改善智財培訓,DAU展開為5年期的智財策略計畫,計有60多項活動待執行,但該策略計劃缺乏重點,沒有排出活動的優先順序,也未具體提出DOD的哪些智財人員應該接受培訓[11]。 (四)DOD須致力發展追蹤已取得/授權智財之後續使用情況的能力 DOD目前的智財指令指示相關政府單位須管理智財相關的契約及智財文件,以避免在採購智財及其相關授權時重複採購,或隨時間流逝而喪失智財權,然而根據訪談結果,相關人員表示DOD採購極大量的智財或相關授權,但不具備追蹤各個智財獲授權使用情形的能力[12]。 三、GAO對DOD的建議 GAO彙整其檢視DOD智財指令執行情況的結果後,對DOD提出下列四個建議[13],建議內容不外乎是指定與智財管理相關的重要項目須指定負責人,且該負責人須為對應智財相關單位的較高管理階層,確保待改善項目有監督與執行者。 (一)完善智財指南 採購及維護次長(The Under Secretary of Defense for Acquisition and Sustainment)應確保DOD智財指南已闡明DOD人員將如何取得細部製程或技術資料。 (二)確保跨部門合作與資源連結 國防部長(The Secretary of Defense)應確保部長辦公室和各部門所需的合作、人員配置和資源,以連結各計畫智財相關專家、人員。 (三)確認智財活動優先順序 採購助理部長(Assistant Secretary of Defense for Acquisition)應確保智財主任(Director of the IP Cadre)與DAU主席合作,為DAU在2023年至2025年間主責與智財相關活動確定優先順序。 (四)確保智財培訓效益 採購助理部長(Assistant Secretary of Defense for Acquisition)應確保智財主任訂定補充指引,以協助部門負責人和採購職業管理主任(Director of Acquisition Career Management,DACM)確定國防部人員在關鍵專業領域接受之智財培訓和取得的證書能使其有最大的獲益。 參、事件評析 綜觀GAO的檢視結果,雖然DOD的智財管理仍有改善空間,但以足見美國聯邦政府對其智財管理之重視程度,不僅指示部會自行管理智財,更透過部會外的公正單位,從規範到組織實際執行情況進行通盤檢視;而部會內部對於智財管理的程度,已經從訂定和整合智財相關規範,進一步到落實在日常任務中,不只重視部會所需技術本身的智財取得或保護,更欲推進到策略計劃前期,將維護軍武相關的細部製程和技術資料等相關內容及權利也納入採購範圍,甚至為此盤點智財所需的專業能力、規劃培訓專門人員,以促進智財管理的量能,其對智財管理深化及重視的程度值得我國借鏡。 [1] GAO, Defense Acquisitions: DOD Should Take Additional Actions to Improve How It Approaches Intellectual Property, (Nov. 30, 2021), available at https://www.gao.gov/products/gao-22-104752 (last visited Feb. 7, 2022) [2] The Patent and Trademark Law Amendments Act of 1980 (Bayh-Dole Act), 35 U.S.C.§§ 200–211, 301–307. [3] President’s Memorandum to the Heads of the Executive Departments and Agencies,Government Patent Policy (Feb. 18, 1983); Exec. Order No. 12,591, § 1(b)(4), 52 Fed. Reg. 13,414 (Apr. 10, 1987) [4] Defense Procurement Reform Act, 1984, Pub. L. No. 98-525, § 1201. [5] Supra note 1, 17-18. [6] Id., 7, footnote 21. [7] Id., 1. [8] Id., 1. [9] Id., 24-28. [10] DAU, About DAU, at https://www.dau.edu/about (last visited Feb., 7, 2022) [11] Id., 29-30. [12] Id., 32-33. [13] Id., 33-34.
美國專利與商標局拒絕以AI為發明人的專利申請美國專利與商標局於2020年4月27日拒絕人工智慧(AI)為發明人之申請並闡明發明人僅限於自然人。本案是美國專利與商標局首次拒絕人工智慧為發明人之申請,同時本最終審查意見(下稱:本意見書)也是第一次闡明發明人僅限於自然人。本意見書也被收錄在美國專利與商標局「人工智慧」、「首席專利審查官最終審查意見」之頁面,作為指標案例。 本意見書是在回應2020年1月20日專利申請申復案(Petition)之審查意見。回顧本專利申請案之基本資料表,發明人名字為「DABUS」、姓氏部分僅以括號註明「由人工智慧自行產生的發明」。本案法定代理人及申請人均為Stephan L. Thaler。Stephan L. Thaler表示,DABUS是一個神經網路系統且「有創意的機器」。美國專利與商標局表示,綜觀美國專利法的用詞(如:Whoever)及立法脈絡,均可得知發明人指的是自然人。具體而言,發明人必須是貢獻發明概念(Conception)的人,專利審查程序手冊(MPEP)定義「發明概念」是一個將發明人「創造行為之心智的完整呈現」(the complete performance of the mental part of the inventive act),僅有自然人具有「心智」(Mental/ Mind),因此發明人僅限於自然人。本審查意見又援引Beech Aircraft Corp. v. EDO Corp.判決,指出「發明人僅限於自然人」。所以,將專利申請基本資料表的姓名欄位填上「DABUS(由人工智慧自行產生的發明)」並不符合美國專利法第115條(35 U.S. Code § 115)。 本案於2019年7月29日提出,隨即於2019年8月8日被美國專利與商標局以「申請文件欠缺,不符合發明人與其繼受人之規範」(35 U.S. Code § 115和37 CFR 1.64)拒絕受理。幾番修正往返後,美國專利與商標局於2019年12月17日仍以「申請文件欠缺」不予受理,Stephan L. Thaler續行申復。美國專利與商標局於2020年4月27日做出本意見書。同一由DABUS創造的發明,但由Ryan Abbott作為申請人的案件,已被歐洲專利局和英國智慧財產局於2019年12月以雷同的理由拒絕。目前美國專利與商標局、歐洲專利局、英國智慧財產局面對人工智慧為發明人之專利申請,立場都是發明人僅限自然人。
新加坡網路安全局發布人工智慧系統安全指南,以降低AI系統潛在風險新加坡網路安全局(Cyber Security Agency of Singapore, CSA)於2024年10月15日發布人工智慧系統安全指南(Guidelines on Securing AI Systems),旨在強化AI系統安全,協助組織以安全之方式運用AI,降低潛在風險。 該指南將AI系統生命週期分成五個關鍵階段,分別針對各階段的安全風險,提出相關防範措施: (1)規劃與設計:提高AI安全風險認知能力,進行安全風險評估。 (2)開發:提升訓練資料、模型、應用程式介面與軟體庫之供應安全,確保供應商遵守安全政策與國際標準或進行風險管理;並辨識、追蹤及保護AI相關資產(例如模型、資料、輸入指令),以確保AI開發環境安全。 (3)部署:適用標準安全措施(例如存取控制、日誌記錄),並建立事件管理程序。 (4)運作與維護:持續監控AI系統的輸入和輸出,偵測異常與潛在攻擊,並建立漏洞揭露流程。 (5)壽命終期:應根據相關行業標準或法規,對資料與模型進行適當之處理、銷毀,防止未經授權之存取。 CSA期待該指南發布後,將有助於預防供應鏈攻擊(supply chain attacks)、對抗式機器學習攻擊(Adversarial Machine Learning attacks)等安全風險,確保AI系統的整體安全與穩定運行。