美國國會提出打擊專利蟑螂的研究報告

  專利蟑螂(Paten Troll)與非專利實施實體(Non-Practicing Entity, NPE)乃係本身不進行任何生產製造或產品銷售,藉由購買專利權(少數亦自行研發),以專利授權或專利訴訟為主要手段,對其他公司啟動專利攻擊,進而收取授權金或賠償金為營利目標之公司總稱。NPE約自2001年開始出現迅速成長,2011年因NPE專利訴訟與授權所造成的花費高達290億美金,較2005年的70億美金成長400%,而其中僅有不到25%是用於研發創新,超過25%用於訴訟。

 

  美國國會智庫機構,國會研究處(Congressional Research Service, CRS)於今年(2012)8月20日發表「專利蟑螂爭議概要」(An Overview of the "Patent Trolls" Debate)研究報告,分析專利蟑螂的行為及其影響,並提出改善方法及建議:

 

  一、建議限制資訊科技的專利保護,然而此舉可能違反WTO下TRIPS之規定(Agreement on Trade-Related Aspects of Intellectual Property Rights)。

 

  二、許多專利蟑螂與NPE利用專利申請得提出延續案(Continuation),延長專利審查的保密期間。使得他公司可能在不知情下使用該專利而造成侵權。因此建議取消申請中專利提出延續案,並適度公開申請中專利案資訊。

 

  三、限制專利蟑螂與NPE申請美國ITC(International Trade Commission)的禁制令,取消專利推定效力,或改變專利授權金計算方式等。

 

  四、縮短專利權期間或增加專利之維持費。

 

  五、仿效商標法上放棄(abandonment)/怠於行使(laches)商標權之抗辯,對於長期未實施之專利,原告需負舉證責任,證明其有進行該專利之研發、商品化或授權。

 

  六、建議專利轉讓或授權皆應強制公開,以促進市場效率。

本文為「經濟部產業技術司科技專案成果」

相關連結
相關附件
※ 美國國會提出打擊專利蟑螂的研究報告, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=5876&no=57&tp=1 (最後瀏覽日:2025/12/26)
引註此篇文章
你可能還會想看
美國參議員提出「消費者網路視訊選擇法」草案

  越來越多消費者由網際網路觀賞視訊內容,保護新興視訊業者之市場競爭力也越加重要。美國參議員John D. Rockefeller於2013年11月發佈「消費者網路視訊選擇法(Consumer Choice in Online Video Act)」草案,塑造一個以消費者需求為中心的視訊市場,提供完全的單頻單賣(a la carte),使消費者有權力選擇想看的節目、決定想看的時間、挑選收看的方式,並且只為真正收看的內容付費。   此外,本法案亦規範網路服務業者必須提供消費者更完整精確的帳單資訊,以增進消費者權益。在促進市場競爭的目的下,本法案也賦予新興視訊產業基本的保護,防止既有業者之反競爭行為,使市場能有效競爭,帶給消費者更多利益。   該法案的主要規範內容簡介如下: ‧管制既有之有線電視、衛星電視與大型媒體公司對網路視訊服務業者的反競爭行為。 ‧提供網路視訊服務業者合理的取得各種節目內容之能力,使他們能提供給消費者更多節目與服務的選擇。 ‧管制寬頻服務業者不得降低其市場競爭者之網路傳輸品質,以保護網路視訊業者接觸消費者、提供服務的管道。 ‧提供消費者更為透明與容易理解的帳單資訊。消費者在申請網路服務時,將能得到更為清晰易懂的服務契約與條款的資訊。 ‧指示聯邦通信委員會持續監督寬頻服務之資費條件,確保這些資費條件不被用於反市場競爭行為。   隨著寬頻服務的普及,網際網路能夠提供更多元的內容,一方面消費者能夠有更多的選擇,確保市場持續有效競爭是非常重要的,本法案對我國而言亦有相當參考價值。

歐盟發布資料法案草案

  2022年2月23日,歐盟委員會(European Commission,以下簡稱委員會)公開資料法案草案(Data Act,以下簡稱草案),基於促進資料共享的目的,草案其中一個目標是使不同規模的企業、用戶在資料利用上有著更加平等的地位,內容包含確保用戶資料可攜性、打破資料存取限制、推動大型企業的資料共享,扶植微/小型企業等幾大方向。   以下就草案對大型企業要求的義務切入,說明草案所帶來的影響: 確保用戶訪問資料的權利: 基本資訊的告知,包含所蒐集資料性質以及訪問方式、使用資料的目的;用戶可在不同產品/服務提供者(以下簡稱提供者)之間切換,且提供者須有技術支援;提供者需要有合理技術,避免資料在未經授權被查閱。 對於提供者的限制: 提供者不得將所蒐集的資料用於取得用戶的經濟地位、資產、使用喜好;具守門人性質的企業不得採取獎勵措施以鼓勵用戶提供自其他提供者處所取得的資料;提供者提供資料可以收取補償,但必須以公平、合理、非歧視、透明的方式為之,需要提供補償計算方式與基礎。 對於微/小/中型企業的保護 提供者對於微/小型企業所收取的資料補償,不得超過提供資料所需的成本;提供者利用市場優勢,對於微/小/中型企業的不合理/公平的約定無效(如單方面免除一方的重大過失/故意行為的責任)。   該資料法案草案須經歐盟議會(European Parliament)通過後才會生效,目前草案規定只要有在歐盟提供物聯網產品或服務之企業,就須遵守草案內容規範,考量到網路服務可跨國提供服務,草案規範與進度仍值得國內企業關注。 「本文同步刊登於TIPS網站(https://www.tips.org.tw )」

人權組織向法國最高行政法院提交申訴,要求政府停止使用歧視性演算法

.Pindent{text-indent: 2em;} .Noindent{margin-left: 2em;} .NoPindent{text-indent: 2em; margin-left: 2em;} .No2indent{margin-left: 3em;} .No2Pindent{text-indent: 2em; margin-left: 3em} .No3indent{margin-left: 4em;} .No3Pindent{text-indent: 2em; margin-left: 4em} 國際特赦組織(Amnesty International)與法國數位隱私權倡議團體La Quadrature du Net(LQDN)等組織於2024年10月15日向法國最高行政法院提交申訴,要求停止法國國家家庭津貼基金機構(Caisse nationale des allocations familiales,CNAF)所使用的歧視性風險評分演算法系統。 CNAF自2010年起即慣於使用此系統識別可能進行福利金詐欺的對象,該系統演算法對獲取家庭與住房補助的對象進行0至1之間的風險評分,分數越接近1即越可能被列入清單並受調查,政府當局並宣稱此系統將有助於提升辨識詐欺與錯誤的效率。 LQDN取得該系統的原始碼,並揭露其帶有歧視性質。該等組織說明,CNAF所使用的評分演算法自始即對社會邊緣群體如身心障礙者、單親家長,與低收入、失業、居住於弱勢地區等貧困者表現出懷疑態度,且可能蒐集與系統原先目的不相稱的資訊量,這樣的方向直接違背了人權標準,侵犯平等、非歧視與隱私等權利。 依據歐盟《人工智慧法》(Artificial Intelligence Act,下稱AIA),有兩部分規定: 1. 用於公機關評估自然人是否有資格獲得基本社會福利或服務,以及是否授予、減少、撤銷或收回此類服務的人工智慧系統;以及用於評估自然人信用或建立信用評分的人工智慧系統,應被視為高風險系統。 2. 由公機關或私人對自然人進行社會評分之人工智慧系統可能導致歧視性結果並排除特定群體,從此類人工智慧總結的社會分數可能導致自然人或其群體遭受不當連結或程度不相稱的不利待遇。因此應禁止涉及此類不可接受的評分方式,並可能導致不當結果的人工智慧系統。 然而,AIA並未針對「社會評分系統」明確定義其內涵、組成,因此人權組織同時呼籲,歐盟立法者應針對相關禁令提供具體解釋,惟無論CNAF所使用的系統為何種類型,因其所具有的歧視性,公機關皆應立即停止使用並審視其具有偏見的實務做法。

美國擬制訂私人通聯記錄保護法案

  美國國會能源及商業委員會( Energy and Commerce Committee )於 2006 年 3 月 8 日 透過匿名表決的方式,通過「防止詐欺取得通聯記錄法」草案( Prevention of Fraudulent Access to Phone Records Act ),希望透過立法的方式保障消費者之隱私權,並要求電信公司加強保護消費者之通聯記錄。由於各黨派對本法案已有共識,故預計於近期排入國會議程後,順利完成立法。   根據美國國會議員 Joe Barton 表示,美國目前對於電話通聯記錄的取得並未進行規範,任何人均可輕易的透過網路購得相關資料。由於通聯記錄中往往包含許多個人之隱私或是敏感性資料,部分不肖之徒(如身份竊盜者、非法的個人資料販賣商)會藉此故意取得個人通聯記錄,以窺探隱私,甚或以此進行犯罪行為。   有鑑於此,美國計畫透過本法案,嚴格禁止以詐騙方式取得電話記錄的情形,並賦予聯邦公平交易委員會( Federal Trade Commission )有權對違反本法規定者進行民事處罰。此外,本法案亦要求電信業者必須符合本法規定之資料安全保護的要求,若違反本法之規定而造成損害,單一案件得處以最高 30 萬元之罰鍰,若為多重案件,則得處以 10 萬元以上 300 萬元以下之罰鍰。

TOP