Groupon日前遭消費者集體訴訟,控告其團購券之有效期限違反消費者保護相關法律。原告消費者主張Groupon違反聯邦信用卡責任公開法案,該法案限制禮券之到期日不得少於出售後五年內。對於原告消費者之主張,Groupon提出抗辯,並申請和解。而另一團購網站LivingSocial也面臨類似的訴訟案件,並且同意支付450萬美元和解金以解決關於團購券有效期限之爭議。在以上兩個案例中,核心問題均涉及,Groupon與LivingSocial所提供之票券是否適用於聯邦和各州法律中關於禮券之規定;換言之,爭議在於,聯邦法律規定禮券到期日不得短於五年,而此規定是否適用於團購網站所提供之票券,目前尚有疑義。就團購券有效期限的現狀而言,團購禮券上通常會標示兩個有效日期,其一為支付價格(市價),另一個是推廣價格(促銷價),前者係指消費者在此交易中原本所應支出之費用,後者則指折扣價格。舉例而言,消費者購買25美元的團購券後,得前往義式餐廳享有價值50美元的餐點,而若是團購券折扣到期後,消費者仍得以團購券換取市價25美元的餐點,但無折扣。
德國聯邦議院在今年4月27日通過「個人資料保護調整和施行法」(Datenschutzanpassungs- und Umsetzungsgesetz, DSAnpUG),其中包含新的德國聯邦個人資料保護法(Bundesdatenschutzgesetz, BDSG)。在這部新的法案中,已施行40年的 BDSG進行大幅調整以符合歐盟個人資料保護規則(Datenschutzgrundverordnung , DSGVO)的標準。 所有歐盟成員國將於2018年5月25日開始適用DSGVO的規定。DSGVO希望能在歐盟成員國內,形成一套具有法律統一性、標準性與高水準的個人資料保護制度。這也意味著侵害個人資料保護的違法行為,如:未使用適當的加密技術以確保個人資料安全,可能受到更嚴重的處罰,最高可達2,000萬歐元或企業全年營業額的4%。 DSGVO的目的在確保歐盟成員國間個人資料保護的共同法制標準,但考量到各成員國間的區域差異,DSGVO也提供國家立法者約60條的開放性條款(Öffnungsklauseln)─允許許多地區的成員國在特定條件下可不依循DSVGO標準。德國聯邦政府在新的BDSG,也運用了這些開放性條款。但有批評者認為,部分新的BDSG規範內容已超越DSGVO的條文規範,如:個資保護專員(Datenschutzbeauftragten)的就業保障。因此,新的BDSG與歐盟法律不符的部分,很可能被宣布違反歐盟法律。另一方面,舊的BDSG僅有48條規定,而新的BDSG則超過85條規定,且更為複雜,這都提高了法律適用上的難度。 雖然新的BDSG其適法性仍有爭議,且是否能通過司法審查亦屬未知。但盡管如此,隨著DSAnpUG 及新的BDSG法律條文制定,未來德國個人資料處理的基本法律框架已確定。由於企業個人資料處理的基本原則已明訂於DSGVO中,且新的BDSG仍是依照DSGVO的規範而制定,因此企業應盡速審查和調整他們的契約和流程,以符合DSGVO的規範要求。
英國發布「人工智慧:機會與未來決策影響」政策報告,並聚焦人工智慧運用及管理英國科學辦公室於2016年11月9日,發布一份政策報告:「人工智慧:機會與未來決策影響(Artificial intelligence: opportunities and implications for the future of decision making)」,介紹人工智慧對於社會及政府的機會和影響,此份政策報告並提出以下各項重要建議: (一)關於人工智慧及應用界定與發展 人工智慧是指由人工製造系統所表現出來的智慧。不僅是將現有的流程自動化,還包含制定目標,並利用電腦程式實現這些目標,常見案例包括線上翻譯、語音辨識、搜尋引擎篩選排序、垃圾郵件過濾、透過用戶回饋改善線上服務、預測交通流量、環境或社會經濟趨勢發展觀察等。 (二)未來對社會及政府利益及衝擊 人工智慧針對提高生產力有巨大的潛力,最明顯的就是幫助企業或個人更有效地運用資源,並簡化大量資料的處理,例如Ocado 及 Amazon這樣的公司正充份利用人工智慧改善倉儲及銷售網路系統,使得客戶可便利快速購得網購商品。 目前,政府也日益增加相關技術的運用,以提高公共服務效率,使資源達到最佳化分配;減少決策者被誤導的可能;使政府決策透明化;確保各部門更了解人民的意見。然政府在利用人工智慧及巨量資料時,應遵守倫理使用指南,並遵守英國資料保護法及歐盟一般資料保護規則等相關法規。 在巨量資料、機器人、自動系統對於勞動市場的衝擊一直都是關注的議題,對於面臨未來工作結構的轉型及相關技術人員的進修及培養,應及早規劃,以適應未來的轉變。 (三)關於相關道德及法律風險管理課題 人工智慧可能潛在相關道德倫理問題。許多專家認為政府應積極管理並降低風險發生可能性,可從以下兩個面向思考: (1)研究機器學習與個人資料運用結合時,對個人自由、隱私和同意等概念的影響。 (2)調適由人工智慧作決策行為時的歸責概念和機制。 有關實際案例之研究,則包括,執法單位在應用預測技術時,應避免以種族、國籍、地址作為標準,並嚴守無罪推定原則,以防止民眾受到歧視或不公平的指控;透過人工智慧可從公開資料推測出某些私人訊息或其親朋好友的消息,此訊息即可能超出原先個人同意披露的內容;原先匿名化及去識別化的訊息,因人工智慧功能加強,導至可能被重新識別,故須定期檢視該保護措施是否足夠。另外,人工智慧的演算偏差可能導致偏見的風險,為了降低這種風險,技術人員應採取對應措施。 針對責任及疏失的判斷,目前尚無太多的實務案例,但為保持對使用人工智慧的信任,仍需有明確的歸責制,可能有必要讓首席執行長或高級主管對人工智慧做出的決策負最終責任。許多專家也建議,部分技術內容須保持透明度,以確定技術使用時是否有盡到相關注意義務。 人工智慧已成為未來發展趨勢之一,對於社會整體層面影響將越來越深,新的技術除了可提升生產力,帶來便利的生活,同樣也會帶來衝擊。為促進相關產業發展及推展新技術的使用,應打造技術發展友善環境,並對於公眾安全進行相關風險評估,如果風險屬於現有監管制度範圍,應評估是否可充分解決風險,或是須要做相對應的調適。另外,在人工智慧融入現實世界同時,相關業者應注意相關產品安全性、隱私權保護和從業人員的倫理教育,以提高大眾對新技術的接受及信賴,並確保對於未來挑戰及轉變已做好萬全準備。
美國為遏止專利濫訟通過創新法案(The Innovation Act of 2013)美國眾議院今年(2013)12月5日通過創新法案(The Innovation Act of 2013,H.R. 3309),主要目的在於填補美國發明法(Leahy-Smith America Invents Act,AIA)對於遏止專利濫訟之不足。創新法案中達成立法目標之核心手段主要有以下五個方向。 1.限縮提訴要件,要求提起專利訴訟,必須說明遭侵權之商品以及遭侵權之情形,特別是針對專利侵權之因果關係的說明,以不實施專利主體(Non-practice Patents Entity,NPE)不生產製造專利產品之特性遏止其專利濫訟。 2.訴訟費用的轉移,將相關成本轉移至敗訴方,並加諸合理之賠償費用。直接以訴訟成本之轉嫁來影響訴訟意願,然而此舉是否造成真正之專利所有者保護自身專利之障礙仍須觀察個案。 3.延遲證據開示,避免證據開示過早影響判決之結果。 4.要求專利所有者持續針對所有之專利進行資訊更新,使專利所有權透明化,以揭露NPE藉由空殼公司進行濫訟之行為。 5.創新法案另試圖使專利產品之實際製造商代替消費者面對專利侵權時相關產品之訴訟。 而眾議院通過創新法案的同時,參議院也有相類似的平行立法提案,稱為專利透明化與改進法案(The Patent Transparency and Improvement Act of 2013,S. 1720)。比較參眾兩院之法案版本後,可以發現兩者立法目的以及採取的手段均類似,主要都集中在於資訊的透明化以及訴訟成本的轉嫁,試圖藉由除去專利訴訟有利可圖的情形遏止專利濫訟的現象,但是參議院版本之法案是否真的能夠達到遏止專利濫訟之情形受到各界更多的爭議。
一名挪威學生提供違法音樂下載連結被判侵權一名挪威學生,因執行校內某項計畫而在2001年架設了一個名為Napster.no的網站。該網站和知名的Napster.com並無關聯。由於Napster.no提供了可免費下載MP3音樂的連結,因而使該名學生遭到Universal Music AS等的著作權侵權指控,並被判賠15900美元。案經上訴,日前挪威最高法院已做出判決,下級法院的判決仍被維持。