加拿大廣播電視和電信委員會(Canadian Radio-television and Telecommunications Commission,CRTC)將制訂新的準則,規範關於加拿大電信業者無線通訊服務契約之條款內容,所謂的無線通訊服務包含行動電話以及其他個人行動裝置,該準則之制訂並將透過網路諮詢收集公眾意見。
在多數的國家,無線服務已經與民眾日常生活密不可分,但難以理解的契約文字、有問題的條款、高昂的漫遊費用或繁重的契約解除費用等事項,時常是消費者對無線通訊服務抱怨的來源。加拿大無線通訊協會(Canadian Wireless Telecommunications Association,CWTA)曾在2009年推出一個業者自律的行為守則,在沒有政府管制的前提下,希望能提供較好的消費者保護。
然而由於加拿大各地方政府的消保規範不一致,除了對消費者權益保護不足外,相關無線通訊業者也感到難以遵行,因此於2012年3月呼籲應由中央管制機關制訂統一的規範。2012年10月,CRTC審視無線通訊市場,認為服務契約條款內容對民眾確實影響重大,許多加拿大民眾表示,對行動電話或其他個人行動服務的許多契約內容感到困惑,如去年(2011),消費者有關無線通訊服務的投訴量,即相當於其他電信服務之總和。故CRTC決定制定具有約束力的準則,幫助消費者選擇無線通訊服務。
本次CRTC邀請加拿大民眾透過網路討論以下問題:
關於無線服務契約之準則應該包含哪些內容?
有關的業者違反準則時,應如何投訴解決呢?
無線服務契約準則應如何推動及審查,以確保其能正常運作呢?
對此,CRTC主席Jean-Pierre Blais表示:「我們希望加拿大民眾參加網路討論,表達對於無線服務契約準則之意見,例如如何使服務契約能更清晰、更容易理解等。」在這份準則制訂完成後,將提供無線通訊服務之業者在制訂服務條款時,有一個明確的、一貫的遵循內容。
聯合國於哥本哈根舉行之氣候變遷綱要公約(UNFCCC)第15次締約國會議(COP15)會議後,對於較未有嚴格的管制工廠分布與二氧化碳排放(此情形又稱之為碳洩漏風險,risk of carbon leakage)的國家,由於該些國家的貨品進入,將對歐盟境內工業造成不公平競爭(unfair competition)結果,歐盟因而就如何保護會員國內工業生產者的措施進行討論。 近來像中國等未有過多法律規範以落實減少碳排放的國家,爲抵制此類國家貨品的進口影響歐盟境內工業生產者,歐盟正重新審視討論法國所提出的對進口至歐盟的貨品實施碳關稅(carbon tariff)的政策。 法國總統薩科奇曾表示,對於不尊重京都議定書(Kyoto Protocol)的國家,歐盟應對其進口產品課徵碳關稅,以保護歐盟境內因執行碳排放交易機制(Emission Trading Scheme, ETS)而必須額外負擔成本之工業生產者經濟利益,並消除國外貨品進口所導致的不公平競爭。 碳關稅在歐盟之實行,非只有法國提出,其實早在哥本哈根會議之前,法國與德國即共同向聯合國秘書長潘基文以書面(joint letter)表達於歐盟實施稅捐調整機制(border-adjustment measure)的想法,以抵制其他未落實國際環境保護規範國家。 今年(2010)三月,歐盟機構重新對於法國所提出的碳關稅進行討論,由於此措施將影響WTO對關稅之調降,身為歐盟最大工業國的德國,基於保護國內工業生產者,仍對碳關稅政策表示支持,惟WTO所制定的關稅相關規定,身為WTO會員國的德國也認為應遵循,以避免引起損失更大的貿易爭端。 在強調綠色經濟的時代,各國要作的不只是落實國際環保規範,對於國內業者的利益也應適當關注。現今歐盟刻正討論的碳關稅,因我國非為京都議定書締約國,一旦實施對我國衝擊不小,所以此政策發展值得我們持續觀察。
2005年我國對美專利申請件數落居外國申請人第4名在獲准件數方面,2005年我國人民向美國專利商標局申請獲准專利案件計5,993件,較上年減少16.84%,維持第3名,次於日本(31,834件)及德國(9,575件);向日本特許廳申請專利獲准案計2,305件,較上年增加24.33%,居所有外國人專利核准案件數第2名,次於美國;向歐洲專利局申請專利獲准案件計133件,較上年成長17.70%。 專利可反映一個國家或區域的創新活動,同時可展現該國或區域發揮知識力量,並將其轉換為有潛力的經濟產出的能力。專利獲准的條件是必須具新穎性、進步性及產業利用性,因此,專利的數量及其相關指標可說是衡量研究及發展(R&D)投入所獲產值的最佳工具。 根據智慧財產局最近發布之「2005年我國與美日歐專利申請暨核准概況分析」, 2005年我國向美國專利商標局、日本特許廳及歐洲專利局之申請與核准專利件數較往年雖有成長,但我國向美國申請專利件數已由2004年的居所有外國申請人之第3名下降為第4名,被南韓所超越,南韓的大幅成長值得關注。 美國依然是我國人民提出專利申請的主要國家,2005年我國人民向美國專利商標局申請專利案計16,617件,較上年增加10.36﹪,居所有外國人新申請案第4名。而南韓向美國專利商標局提出專利申請案自2003年之10,411件,成長至2004年之13,646件,2005年更以17,217件超越我國,攀至第3名。在日本方面,我國人民向日本特許廳申請專利每年超過3,000件,2005年排名第3,次於美國(9,177件)、韓國(5,990件);而在歐洲專利局方面,2005年我國人民共申請679件,有逐年增加趨勢,在亞洲國家中次於日本(21,461件)、南韓(3,853件)。
英、美唱片業者控告YouTube-mp3.org侵權2016年9月國際唱片業協會(International Federation of the Phonographic Industry,簡稱IFPI)、美國唱片產業協(Recording Industry Association of America,簡稱RIAA)及英國唱片產業協會(British Phonographic Industry,簡稱BPI)對全球最大的串流音樂翻錄網站「YouTube-mp3.org」展開法律行動,指控該網站違反YouTube的服務準則,且侵害音樂著作權。目前該案件由美國加州聯邦法院審理。 「YouTube-mp3.org」將串流音樂變成可供下載的音樂檔案,使用者只需在該網站(YouTube-mp3.org)複製貼上原YouTube的音樂影片網址,即能將其轉為MP3檔案下載使用。RIAA表示運營商透過該網站已經獲利數百萬美元的廣告收入,卻未支付任何金錢報酬給音樂家或著作權權利持有人,因此控告YouTube-mp3. org及該站負責人Philip Matesanz侵害著作權。BPI則表示,使用者得透過各種串流服務存取合法音樂,若對此非法轉載音樂的業者或行為不提出法律行動,將會影響合法的音樂串流服務。 另一方面,德國聯邦部門(German Federal Ministry ) 早在2011年時曾認定,從Youtube網站複製下載音樂為非商業之私人行為合法。而電子前線基金會(Electronic Frontier Foundation,簡稱EFF)對於英美唱片業協會要求法院消除此類型網站一事持否定看法,認為法律不應賦予著作權人或商標所有人修訂刪除網站的權力。
美國著作權局發布AI著作權報告第三部分:生成式AI訓練-AI訓練是否構成合理使用?美國著作權局發布AI著作權報告第三部分:生成式AI訓練-AI訓練是否構成合理使用? 資訊工業策進會科技法律研究所 2025年06月04日 美國著作權局於2025年5月發布著作權與AI第三部分報告之預出版本 (Copyright and Artificial Intelligence Part 3: Generative AI Training pre-publication version)[1],該報告重點為生成式AI訓練資料與著作權之關係,彙整各方意見並分析現行法制之挑戰及修改方向,目前發布之版本為預出版本,該報告說明將於近期發布最終確認版,預期其結論與實質內容並不會有修改。 壹、事件摘要 美國著作權局自2023年起即開始對AI所引發之著作權法律及政策問題進行研究,同年8月著作權局發布著作權及AI諮詢通知(Comments on Artificial Intelligence Notice of Inquiry, NOI),徵集各界對AI著作權議題之意見,著作權局亦針對相關議題舉辦多場公聽會及研討會協助意見之蒐集[2]。NOI發布後蒐集到之意見經著作權局整理分析,於2024年7月起發布AI著作權報告,第一部分為數位仿造,第二部分於2025年1月發布為就AI作品之著作可保護性之分析,而同年5月所發布之第三部分則聚焦於生成式AI之訓練。 生成式AI於訓練過程可能大量使用受著作權保護之作品,此份報告針對訓練過程可能涉及之著作權問題進行分析,主要說明AI模型訓練過程中使用受著作權保護作品是否可構成合理使用。 貳、重點說明 一、生成式AI模型訓練及模型權重對重製權之侵害 使用受著作權保護作品進行AI模型訓練涉及著作權中之重製,除非開發者能提出授權或其他合理抗辯如合理使用等,否則可能對一項或多項著作權利構成初步侵權(Prima Facie Infringement)。AI開發者於模型訓練階段會進行多次作品複製,包含下載作品、於儲存媒介間轉換、將作品進行格式化或製作副本等[3],模型訓練過程中暫時複製之作品亦有可能因其存在於時間足夠而構成重製權之侵害[4]。 在特定情形下,模型權重(model weights)[5]之複製亦可能構成重製權之侵害。訓練過程可能使模型權重包含著作權作品,而若第三方複製了包含著作權作品之模型權重,即便其未參與模型之訓練,亦可能構成初步侵權[6]。若模型能在未經外部輸入之情形下產出與訓練範例相似之內容時,表示此範例必以某種形式存在於模型權重中,故此模型權重之複製極有可能侵犯著作重製權[7]。換言之,不僅開發者有可能因模型權重之複製侵害著作權人之權利,部署、使用等第三方若複製模型權重亦有可能構成對重製權之侵害。 著作權局指出,模型權重究竟是否會構成重製權或甚至衍生作品之侵權,須判斷該模型權重是否保留與作品受權利保護部分實質相似之內容,僅有在實質相似之情形下,模型權重之複製才可能構成侵權[8]。 二、合理使用 對著作權作品之合理使用可做為作品重製權的抗辯,著作權局於報告中就不同因素分析AI使用著作權作品進行訓練是否得主張合理使用。AI於訓練過程中會有多次複製行為,惟在判斷AI模型訓練是否為對作品之合理使用,仍須視整體使用情境進行判斷[9]。 (1) 作品轉化性須視模型目的及佈署判斷 報告中分析作品之轉化性(transformativeness)[10],AI訓練使用作品是否具有轉化性並非絕對,而是依據模型最終之功能及佈署有程度上之區別,須依個案判斷。若模型之訓練目的為用於研究或封閉系統,則該模型具高轉化性;若其目的是生成與訓練用作品實質相似之結果時,不具轉化性。多數模型之轉化程度會落在前述兩極端之中間,如模型使用特定類型之作品進行訓練,用以生成使用目的與原作相同之內容時,即便其生成內容未有實質相似,頂多僅為有限度之轉化(modestly transformative)[11]。AI開發商得於其系統設置防護措施,限制模型複製受著作權保護作品之節錄內容,使生成內容之目的與原作品不同,此措施能使模型訓練更具轉化性[12]。 有論者認為,使用受著作權保護作品進行AI模型訓練並非出於表達目的,且近似人類學習,因此實質上應是具有轉化性的,著作權局否定了前述兩種說法。報告中說明,語言模型於訓練時所吸收的內容包含文句、段落及文件之排列選擇,並非單純僅吸收其單字含意,且所生成之模型是被用作創造表達性內容,故不得謂AI模型為非表達性目的[13]。其次,針對人類學習觀點,報告首先闡明,學生基於學習目的亦不得以合理使用為由複製整本著作,因此人類學習並不得直接作為合理使用之抗辯。生成式AI之訓練能迅速分析並生成完美之作品,此非如同人類經學習後會產出具個別人格特質之結果,故著作權局不同意AI模型之訓練為與人類學習相同具有轉化性之論點[14]。 (2) 受著作權保護作品之表達性 AI訓練所使用之受著作權保護作品若具較高創作或表達性,如小說、電影等,其著作權比其他作品如電腦編碼等功能性作品更接近著作權之保護核心。而AI模型訓練來源多元,因此判斷上仍須視個案模型及作品而定。 (3) 使用作品之合理比例 AI模型訓練需大量複製受著作權保護作品,於判斷其複製比例是否合理時,係判斷模型訓練所複製之部分對於受著作權保護作品之數量及重要性使否合理[15]。作品使用之合理性,須考量重要性以及數量,若模型僅使用小部分作品做訓練,但該部分為著作權作品之核心部分,此使用並不一定合理。 在使用完整作品層面,生成式AI較一般搜尋引擎更不具合理性,生成式AI所提供之資訊並非僅限於其訓練資料庫中所複製作品資料。然而,許多生成式AI之訓練方式必須使用完整作品進行訓練,因此,著作權局指出,雖開發者使用完整作品進行訓練與合理使用相悖,但若其訓練具有轉化性目的(transformative purpose),並且有必要透過大量作品之訓練以提升模型效能時,則使用整部作品進行訓練可能被認為合理[16]。換言之,使用完整作品進行訓練合理與否須連同其使用必要性及訓練目的一併考量。 (4) 影響原作品之潛在市場或價值 報告中點出三項生成式AI訓練可能造成的市場危害。 A 銷售損失(lose sale):權利人因潛在消費者選擇AI複製創作取代原作,而失去收入。 B 市場稀釋 (market dilution):AI生成內容之速度以及規模對訓練資料中同類作品之市場造成稀釋風險,原作者將更難銷售其作品亦將使消費者更難找到真人創作之作品[17]。AI所生成風格相似之作品亦會導致市場稀釋,風格非為著作權所保障之方為,惟若AI生成與作品風格相似之內容,即便未有實質相似,但消費者可能因此難以分辨AI創作與真人作者,將使AI作品與原作者之作品於市場上直接競爭而影響原市場[18]。 C 喪失授權收入機會 (lost licensing opportunities):權利人本可就其作品於市場上有授權收入之機會,但因AI未經授權使用作品進行訓練而喪失該部分收入[19]。 三、 授權使用 對於AI自願授權之情形於近年越來越普遍,報告亦肯認自願授權之可行性,雖自願授權可行,且已有開發商開始實施,惟對於完全滿足AI產業之需求仍存有疑義[20]。該報告認為,即便現階段自願性授權仍為發展中之制度,但該制度確實能避免使用著作權作品之不確定性。著作權局認為應讓自願性授權制度於授權市場於無政府干預情形下繼續發展,若未來於特定類型作品中出現失靈情形時,再考慮進行擴大集體授權等干預措施[21]。 參、事件評析 AI訓練使用著作權保護作品是否可以合理使用作為抗辯為近年AI發展下著作權高度討論問題之一。目前美國各地法院中有40多件相關案件正在進行審理,然就此報告之結論觀之,其並未對AI訓練是否可作為合理使用給予統一解答,合理使用與否仍須視個案而定。如同報告結論所提及,AI訓練過程中,使用受著作權保護作品可能具有轉化性,但是否足以構成合理使用,仍須視其所使用之作品、來源以及目的等個案因素而定[22]。AI訓練於著作權仍存在一定程度之不確定性。 值得注意的是,雖報告並未明示AI訓練使否為合理使用著作權作品,惟其立場似乎更偏向有利於著作權利人。例如報告中於轉化性認定具有灰色地帶,開發商是否能主張合理使用仍需於後續由法院個案認定。此外,報告中提及市場稀釋理論,目前尚未有法院採用,對合理使用之認定較為嚴格,即使未有實質相似之生成內容亦有可能因影響市場競爭被視為非合理使用,可見該理論對著作權利人之權利保障。 同時著作權局亦正向看待產業界透過自願性授權進行作品訓練之方法,雖該制度於AI訓練上尚未為一完善制度,但確實地授權制度能同時促進產業發展並保護著作權[23]。目前實務上亦是以此種作法解決合理使用之困境,但授權制度仍有待市場持續發展完善制度以確保能符合AI訓練之需求。 美國著作權局之報告雖對AI使用著作權保護作品進行訓練進行分析及說明,惟其結論仍是認為判斷上需依照個案分析。目前國際上尚未有對AI合理使用之實際定論,自願性授權仍為產業界所使用之方法。我國著作權法亦未對AI訓練之合理使用有說明,國際上將會如何發展仍有待觀察。 資策會科法所創智中心致力於著作權相關科技法律研究,本中心將持續關注相關議題並更新動態。 本文為資策會科法所創智中心完成之著作,非經同意或授權,不得為轉載、公開播送、公開傳輸、改作或重製等利用行為。 [1]U.S. Copyright Office Copyright and Artificial Intelligence, Part 3: Generative AI Training pre-publication version, https://www.copyright.gov/ai/Copyright-and-Artificial-Intelligence-Part-3-Generative-AI-Training-Report-Pre-Publication-Version.pdf [2]U.S. Copyright Office, Copyright Office Issues Notice of Inquiry on Copyright and Artificial Intelligence, https://www.copyright.gov/newsnet/2023/1017.html (last viewed: 2025/05/19) [3]supra note 1, at 26. [4]Id. at 27. [5]AI模型之建立仰賴神經網,主要功能為將輸入資料轉換為輸出資料。神經網路之運作方式係透過大量於訓練過程中產生之參數進行運案,而該些參數即為「權重」(weights)。 [6]Id. at 28. [7]Id. [8]Id. at 30. [9]Id. at 36-37. [10]轉化性係指新作品加入新元素,具有與原作不同目的或性質,且以新表達、意義或訊息改造原作。並且新作品於市場上較不會取代原作。 [11]Id. at 46. [12]Id. [13]Id. at 47. [14]Id. at 48. [15]Id. at 54. [16]Id. at 60. [17]Id. at 65. [18]Id. at 65-66. [19]Id. at 66-67. [20]Id. at 85. [21]Id. at 106. [22]Id. at 107. [23]Id. 本文同步刊登於TIPS網站(https://www.tips.org.tw)