本文為「經濟部產業技術司科技專案成果」
設於英國倫敦的遠距賭博協會(Remote Gambling Association, RGA)於2007年12月向歐盟執委會提出申訴,指美國政府對外國網路賭博業者選擇性執法行為已違反服務貿易總協定(General Agreement on Trade in Services, GATS)規定。歐盟執委Peter Mandelson因此表示,歐盟將會針對美國政府此一差別管制行為進行調查,以瞭解美國政府是否已違反貿易障礙規定。 美國在世界貿易組織(World Trade Organization, WTO)談判中曾承諾開放網路賭博,嗣後卻在2006年通過「違法網路賭博執行法」(Unlawful Internet Gambling Enforcement Act, UIEGA),禁止銀行和信用卡業者對美國境外之網路賭博業者提供支付服務,導致所有歐洲之網路賭博業者選擇退出美國市場。 對於美國UIEGA立法,世界貿易組織曾表示,美國政府固然有權透過法規禁止離岸賭博(offshore betting)以保護公共道德,但該規範僅針對外國業者,未一視同仁適用於美國境內業者,已違反貿易法規。對此,美國政府和歐盟、日本、加拿大等國曾達成協議,承諾在其他方面予以補償,以換取各國同意美國退出世界貿易組織在賭博部分之規範。但由於美國司法部仍持續調查歐洲網路賭博業者在前述法規生效前的營業行為,並宣稱渠等已違反美國法規,此一調查行為因此導致此次遠距賭博協會向歐盟提出申訴;待調查結果出爐後,美國與歐盟間的貿易關係預料將受到不小的影響。
德國聯邦資訊技術,電信和新媒體協會針對AI及自動決策技術利用提出建議指南德國聯邦資訊技術,電信和新媒體協會於2018年2月6日在更安全的網路研討會中針對利用人工智慧及自動決策技術利用提出建議指南(Empfehlungen für den verantwortlichen Einsatz von KI und automatisierten Entscheidungen),旨在提升企業數位化與社會責任,並提升消費者權益保護。 本份指南提出六項建議: 促進企業內部及外部訂定相關準則 例如規定公司在利用演算法和AI時,必須將影響評估列入開發流程,並列為公司應遵守的道德倫理守則,以確保開發的產品或服務符合公平及道德。 提升透明度 使用者如有興趣了解演算法及其含義,企業應協助調查並了解使用者想獲知的訊息,並透過相關訊息管道提升產品及服務透明度。因此,企業應努力使演算法及其操作和含義能夠被使用者理解。此亦涉及即將實施的歐盟一般資料保護規則中的透明度義務。在機器學習或深度學習情況下,可能會增加理解性和可追溯性難度,但有助於分析流程並使其更接近人類理解的方法在科學和商業實踐中,應特別關注並進一步討論。另外,透過教育及使用說明協助及控制功能,教導消費者係建立雙方信任的重要手段。企業應在第一線中說明產品或服務中使用的手段(演算法,機器學習,AI)。除了解釋使用那些技術來改進產品和服務外,應一併解釋如何從技術控制過程中獲得相關知識以及提供那些後援支持。另外,例如透過幫助頁面,儀表板或部落格,解釋發生什麼以及如何做出某些影響深遠的自動化決策,使用戶更了解有關使用自動決策相關訊息。因此建議企業採取強制有效以建立信任的措施,使用戶理解是否及如何使用相關演算法,此可能包括使用自動化決策,使用特定資料組和使用技術的目的,亦即使用戶對演算法,機器學習或AI支持的決策有基本的了解。 為全體利益使用相關技術 人工智慧等新技術之重要性不應被低估,目前在生活和工業等眾多領域皆有廣泛應用。對於個人和集體而言,將可帶來巨大的利益,因此應該充分利用。例如,人工智慧可降低語言障礙,幫助行動不便的人可更加獨立自主生活,改善醫療診斷,提升能源供應效率,甚至是交通規劃和搜索停車位,都只是人工智慧偉大且已被使用的案例。為促進技術發展,應公平地利用其優勢並預留商業應用模式的空間,同時充分解決涉及的具體風險。產業特定的解決方案十分重要,但應兼顧受影響者的利益,並與廣大公眾利益找出妥協平衡點,且應排除不適當的歧視。建議在使用決策支持技術時,應事先檢查相關後果並與其利益比較。例如,可以在資料保護影響評估的框架進行。作為道德準則的一部分,必須確保演算法盡可能量準確地預測結果。 開發安全的資料基礎 資料係人工智慧支援決策的基礎。與人為決策者相同,資料不完整或錯誤,將導致做出錯誤的決定。因此決策系統的可靠性仍取決資料的準確性。但資料質量和資料來源始終不能追溯到源頭,如果可能的話,只有匯總或非個人資料可用於分析或分類用戶群組。因此,確切細節不可被使用或揭露。因此建議企業應考慮要使用的資料、資料的類別和在使用AI系統前仔細檢查資料使用情況,特別是在自我學習系統中資料引入的標準,並根據錯誤來源進行檢查,且儘可能全面記錄,針對個人資料部分更應謹慎處理。 解決機器偏差問題 應重視並解決所謂機器偏差和演算法選擇和模型建立領域的相關問題。解釋演算法,機器學習或AI在基層資料選擇和資料庫時所產生決策偏見相當重要,在開發預期用途的演算法時必須納入考量,對員工應針對道德影響進行培訓,並使用代表性紀錄來創建可以識別和最小化偏差的方法。企業並應該提高員工的敏感度並培訓如何解決並減少機器偏見問題,並特別注意資料饋送,以及開發用於檢測模式的內、外部測試流程。 適合個別領域的具體措施和文件 在特別需要負責的決策過程,例如在車輛的自動控制或醫療診斷中,應設計成由責任主體保留最終的決策權力,直到AI的控制品質已達到或高於所有參與者水平。對類人工智慧的信任,並非透過對方法的無條件追踪來實現,而是經過仔細測試,學習和記錄來實現
涉外智慧財產權訴訟之國際裁判管轄-以侵害訴訟為中心 經部拉抬矽產量打造太陽能產業經部致力推動太陽能整體產業發展,六月下旬舉辦兩場產官學座談會後,將制訂太陽能產業推動政策,整合太陽能上中下游供應鏈。 矽材料嚴重缺乏是目前國內太陽能光電產業發展面臨最大的障礙,經濟部能源局初步決定雙管齊下,一方面規劃引進德國 SolMic 公司退休人員團隊之技術人員,協助國內廠商突破技術障礙;另一方面將藉由研發火法冶金純化技術,生產矽材料,目前該技術已由工研院投入研發階段,政府預計投入十億元,希望在二 ○○ 八年達到生產三百噸,至二 ○ 一 ○ 年成長至一千噸。能源局指出,矽材料的供應問題若解決,國內將可建立完整上下游的太陽能光電產業供應鏈,預計二 ○ 一 ○ 年的產業規模可達六百億以上。