英國DECC發佈實施智慧電表對隱私影響評估報告

  英國能源與氣候變遷部 (Department of Energy & Climate Change, DECC) 於2012年十二月十二日,依據歐洲執委會於同年三月針對智慧電表系統推展準備所發表的建議 (2012/148/EU: Commission Recommendation of the 9th March 2012 on preparation for the roll-out of SM systems, Section 1.4),公佈其就智慧電表實施計畫對隱私影響的評估 (Privacy Impact Assessment)。

 

  該項評估羅列了十一項面向,分別探討其可能因智慧電表實施對隱私帶的衝擊。這些面向包括有智慧電表為防範非法、未經授權資料近取的安全性管理,中央、地方政府機關及執法單位為他途而對資料的使用,第三人對細部能源消費資料的取得,對電表資料過長時間的保留,及非帳戶持有人對能源消費資料之取得等。

 

  該部部長巴洛妮絲‧菲瑪 (Baroness Verma) 表示: 消費者是最重要的,因此能源與氣候變遷部在推動智慧電表實施的同時,亦致力於隱私、安全、消費者保護及通信等議題的處理。

 

  除此之外,DECC並針對應如何]執行歐盟於同年十月二十五日通過的能源效率指令(Energy Efficient Directive 2012/27/EC) 中,第十條第二項B款所定關於消費者對去過去至少二十四個月能源消費資料應有簡易取得方式之要求,展開公開諮詢的程序。

 

  英國智慧電表的全面推行預計從2014年展開至2019年結束前完成。其是否能在確保公眾能源消費資料不受非侵害或不當利用的前提下,發展各項配套措施以完成這項各國皆欲達成浩大工程,令人期待。

相關連結
相關附件
※ 英國DECC發佈實施智慧電表對隱私影響評估報告, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=5978&no=57&tp=1 (最後瀏覽日:2026/02/20)
引註此篇文章
你可能還會想看
美國OMB發布M-26-04備忘錄,確立聯邦採購之「無偏見原則」與透明度義務

美國白宮管理與預算辦公室(Office of Management and Budget,以下簡稱OMB)在2025年12月11日發布M-26-04備忘錄(以下簡稱本指引),目標是落實第14319號行政命令「防止聯邦政府中的覺醒AI」(Preventing Woke AI in the Federal Government)。本指引闡述「追求真相」(Truth-seeking)、「意識型態中立」(Ideological Neutrality)兩大「無偏見AI原則」(Unbiased AI Principles),並強制要求聯邦機構在採購大型語言模型(LLM)時,必須將此二原則納入合約條款。 為確保符合規定,本指引要求聯邦機構在進行採購時,應避免強制供應商揭露過於敏感的技術資料(如模型權重),而是採取以下兩層級的資訊揭露架構: 1. 基本透明度要求(Minimum Threshold for LLM Transparency) 各機構於招標階段,應要求供應商提供以下資訊: (1) 可接受的使用政策:界定產品適當與不適當用途的文件。 (2) 模型、系統和/或資料的摘要卡(Model, System, and/or Data Cards):包含訓練摘要、風險緩解措施及基準測試評分。 (3) 終端用戶資源與意見回饋機制:包含用戶教程及針對違反無偏見原則產出的回報管道。 2. 強化透明度門檻(Threshold for Enhanced LLM Transparency) 若機構擬將模型整合至其他軟體或服務中,則需獲取更深入的開發與運作資訊,例如: 1. 預訓練和後訓練(Pre-Training and Post-Training):如影響產出事實性(factuality)的活動、系統提示詞(System Prompts)、以及內容審查過濾器的具體運作。 2. 模型評估:針對政治議題的偏見測試結果與方法論。 3. 模型中嵌入的企業控制(Enterprise-Level Controls): 如可客製化的系統指令或來源引用功能。 4. 第三方對模型的修改:非原廠開發者所施加的額外控制層。 本指引對聯邦行政機構具有行政拘束力。機構必須於2026年3月11日前更新採購政策,並將上述要求納入新舊合約中。值得注意的是,本指引引入了「實質性要求」(Materiality Requirement),即若供應商拒絕針對違反無偏見原則的產出採取糾正措施,將構成合約違約之重要事由,機構得據此終止合約。 觀察美國OMB此次發布的內容,係透過將「意識形態中立」轉化為具體的採購合規要件,OMB利用聯邦政府龐大的購買力,在採購合約中確立供應商的「透明度義務」,OMB指引不僅建立了明確的法遵標竿,更可能發揮示範效應,將政府端的無偏見規範逐步推廣至私營部門,轉化為產業的最佳實踐標準。

科羅拉多州新法迫使網路購物巨擘亞馬遜退出該州市場

  美國網路購物龍頭業者亞馬遜(Amazon)於2010年3月宣布,肇因於科羅拉多州(Colorado)最新通過的網路稅法,該公司將中止與科羅拉多州當地網路業者之間的合作關係,消息披露後,隨即對4000位以上科羅拉多州民眾之生計產生劇烈影響。     亞馬遜於全美各州均推動所謂的「亞馬遜合夥事業」(Amazon Associates),參加此一合作模式的各州網路業者,只要網路使用者透過業者建置的網路連結而於亞馬遜網站進行消費時,業者便可自亞馬遜收取特定之佣金。而亞馬遜此次選擇退出科羅拉多州前,事實上該公司亦曾因網路課稅問題,而陸續退出北卡羅來納州(North Carolina)與羅得島州(Rhode Island)之網路購物市場。     然而,相較於先前北卡羅來納州與羅得島州網路營業稅課徵之對象,以設籍於該州的網路業者為主;此次科羅拉多州(Colorado)通過的新法,應被徵收營業稅之網路業者,則不以設籍該州為限,凡與該州居民進行交易而設籍於其他州的網路業者,亦須向該州納稅。同時,科羅拉多州當地居民進行網路購物時,將須繳交2.9%之網路消費稅。     亞馬遜表示,新法將使迫使該公司每年上繳約460萬元的稅額,以彌補科羅拉多州現階段13億元之預算赤字。無獨有偶,深受預算赤字所苦的加州,近來亦積極討論應否制定網路稅法,支持者表示新法若順利通過,可望每年為州政府貢獻超過1.5億美元的稅收,有助於彌補該州高達20億美元之預算缺口。

中國大陸國務院於2014年11月19日通過其《促進科技成果轉化法修正案(草案)》,並將提請全國人大常委會審議

  中國大陸國務院常務會議於2014年11月19日通過其《促進科技成果轉化法修正案(草案)》,並將提請全國人大常委會審議。本次修法重視「國家制定政策,充分發揮市場在科技成果轉化中的決定性作用,建立科技成果轉化市場導向機制和利益分配機制」,其中明文規定中國大陸國務院和地方各級人民政府應當加強財政、稅收、產業、金融、政府採購等政策,以強化科技成果轉化相關活動,推動科技與經濟結合,加速科學技術進步,實現創新驅動發展。   按中國大陸《促進科技成果轉化法》係於1996年10月1日施行,歷經2007年之修訂,共計6章37條。本次通過的修正草案,增加至9章58條,其中保留和擴充現行法13條,修改合併20條,刪除4條,新增29條。本次修法加大其政府對於科技成果轉化的財政性資金投入,並可引導其他民間資金投入。此外,本次修法也放寬中國大陸高等院校和重點研究院所之科技成果的歸屬,讓其能夠順利地轉化至民間企業。例如:草案第8條規定利用財政性資金設立的科研機構、高等學校可以採取合作實施、轉讓、許可和投資等方式,向企業和其他組織轉移科技成果,並且國家鼓勵這類機構優先向中小企業轉移科技成果。   另,草案第10條亦規定科研機構、高等學校對其依法取得的科技成果,可以自主決定轉讓、許可和投資,通過協定定價、在技術市場掛牌交易等方式確定價格。相關修正大幅放寬成果運用的彈性,惟科研機構、高等學校仍應依草案第14條規定,向主管部門提交科技成果轉化情況年度報告;主管部門應當將科技成果轉化情況納入對科研機構、高等學校的考核評價體系。   本次修法還有一個重點是放寬中國大陸科研機構的研究員及大學教授從事科技成果轉化活動。例如:草案第13條規定利用財政性資金設立的科研機構、高等學校應當建立符合科技成果轉化工作特點的職稱評定、崗位管理、考核評價和工資、獎勵制度。而草案第19條第一項規定,科研機構、高等學校科技人員可以在完成本職工作的情況下兼職從事科技成果轉化活動,或者在一定期限內離職從事科技成果轉化活動。同條第二項亦規定科研機構、高等學校應當建立制度規定或者與科技人員約定兼職、離職從事科技成果轉化活動期間和期滿後的權利和義務。   綜上,本次修法除強化中國大陸研發成果之運用外,更替中國大陸大學教授打開一條前往民間服務或創業的康莊大道,影響不可謂不大,但修正草案最後尚須經中國大陸全國人大常委會審議通過,將持續觀察審議之最終結果。

歐盟第29條工作小組發布「自動化個人決策和分析指引」處理個人資料自動化決策與資料剖析風險問題

  歐盟第29條工作小組於2017年10月3日為因應歐盟一般資料保護規則(GDPR)第22條規定發布「自動化個人決策和分析指引」(Guidelines on Automated individual decision-making and Profiling for the purposes of Regulation 2016/679,2018年2月6日進一步修正,下稱指引),處理對個人資料自動化決策(automated decision-making)和個人檔案剖析(Profiling)的建立。   指引分為五個部分與最佳實踐建議,旨在幫助資料控制者(controller)合乎GDPR對個人資料自動化決策和分析的要求,內容包括下幾點:1.定義自動化決策和分析,以及GDPR對這些概念的處理方法;2.對GDPR第22條中關於自動化決策的具體規定;3.對自動決策和分析的一般規定;4.兒童和個人檔案剖析(Profiling)的建立;5.資料保護影響評估。   指引的主要內容包括:   個人檔案剖析(Profiling),意謂收集關於個人(或一群個人)的資料,並分析他們的特徵或行為模式,加以分類或分群,放入特定的類別或組中,和/或進行預測或評估(例如,他們執行任務的能力,興趣或可能的行為)。   禁止對個人資料完全自動化決策,包括有法律上法或相類重大影響的檔案剖析,但規則也有例外。應有措施保障資料主體的權利,自由和合法利益。   GDPR第22條第二項a之例外規定,(履行契約所必需的),自動化個人決策時,應該作狹義解釋。資料控制者必須能夠提出分析、自動化個人決策的必要性,同時考慮是否可以採取侵害隱私較少之方法。   工作小組澄清,關於在要求提供有關自動化決策所涉及的邏輯上有意義的資料時,控制者應以簡單的方法,告訴資料主體其背後的理由或依據的標準,而不得總是以自動化決策所使用算法進行複雜的解釋或者公開完整的算法為之。所提供的資料應該對資料當事人有意義。   對資料主體提供關於處理自動化決策上有關重要性和預期後果的資料,其意義在於必須提供關於該資料之用途或資料未來處理以及自動化決策如何影響資料主體的重要訊息。例如,在信用評等的情況下,應有權知道其資料處理的基礎,資料主體並能對其作出正確與否的決定,而不僅僅是關於決策本身的資料。   「法律效果」是指對某人的法律權利有影響,或者影響到個人法律關係或者其契約上權利。   工作組並未將GDPR前言71段視為絕對禁止純粹與兒童有關的自動決定,指出僅在某些情況下才有其適用(例如,保護兒童的福利)。   在基於自動化處理(包括分析)以及基於哪些決策產生法律效應或類似顯著效果的基礎上對個人方面進行系統和廣泛評估的情況下,進行資料保護影響評估並不局限於「單獨」自動化處理/決定。

TOP