本文為「經濟部產業技術司科技專案成果」
「促進整合產官學共同研究的大學概況調查書(産学官共同研究におけるマッチング促進のための大学ファクトブック)」為日本經濟產業省與文部科學省所共同設置的「促進創新產官學對話會議」議定後向外提出,期待藉此使企業更容易理解大學的產官學合作現狀,進一步實現正式的產官學連攜活動。 該概況調查書的先行版中收集整理了各大學整合產官學連攜的實績等資訊,2018年發布的正式版則統整日本327所大學的情報,擴充並更新了該概況調查書的內容,包含:1.產學連攜相關的聯絡窗口資訊等;2.產官學連攜活動的配套方針與往後期待重點化的事項;3.產學連攜之本部機能的相關情報;4.面向正式共同研究的配套措施,如平均交涉期間、跨領域型共同研究;5.各大學之專精領域及其實例;6.資金、資產及智慧財產相關連的持有使用狀況;7.大學發起的創投事業數及其支援體制;8.混合僱用制度的狀況。
美國FDA醫療器材與放射健康中心發布2024財政年度醫療器材指引美國食品藥物管理署(U.S. Food and drug administration, FDA)之醫療器材與放射健康中心(Center of Devices and Radiological Health, CDRH)於今(2023)年10月10日發布2024財政年度指引,其內容依據預算配置的優先順序,將2024年醫療器材與放射產品相關指引分為「A級」、「B級」及「回顧性審查」三份清單。而CDRH希望將訊息公佈後,針對這些指引的優先處理順序、修改或刪除徵求外部建議,以下節錄這三份清單內容: (1)A級清單:FDA擬於2024 財政年度優先發佈的醫療器材指引文件清單,內容包含醫材的再製造及短缺管理、預訂變更控制計畫、運用真實世界證據輔助監管之決策,及基於人工智慧/機器學習之醫材的軟體生命週期管理指引等。 (2)B級清單:FDA 在 2024 財政年度於資源許可的前提下,擬發佈的指引文件清單,內容包括醫材製造商的故障主動報告計畫、製造與品質系統軟體之確效管理,及診斷測試用之3D列印醫材管理指引。 (3)回顧性審查清單:為1994年、2004年和2014年發佈至今,目前仍適用的指引文件綜合清單,詢問是否有需與時俱進之處。 具體而言,CDRH希望徵求外界對現有清單優先順序配置合宜性的建議,同時也開放各界提出哪些醫材相關主題的指引文件草案可待補充。對於回顧性審查清單,如有修訂或刪除之必要,亦應檢具建議與具體理由。 從此三份清單及後續外界的意見,我們可藉此掌握美國在醫材短缺管理、預定變更控制、運用真實世界證據決策,及醫材軟體生命週期與確效管理等領域,政府資源配置與投入的規劃,同時也作為我國醫材政策之借鏡。
歐盟會員國要求分享DNA資料庫歐盟十五個會員國為強化對抗恐怖攻擊、跨邊境犯罪及非法遷徙之國際合作,於2007年3月28日提出有關資料分享的立法草案,以期歐盟能夠建立一套資料分享的機制與架構。立法草案明確規範了各成員國就資料保護所應給予的等級,其必須保證個人資料保護必須達到與1980年歐洲理事會(Council of Europe)通過的「保護自動化處理個人資料公約(Convention for the Protection of Individuals with Regard to Automatic Processing of Personal Data)」及其於2001年通過的附加議定書相同等級。 該立法草案係根據「Prüm條約」而來,其條約簽署背景為2004年馬德里的恐怖組織炸彈攻擊事件,有鑑打擊恐怖攻擊及跨國犯罪之國際合作,歐盟七個會員國於2005年5月27日在德國、比利時及盧森堡邊境的城市Prüm,簽訂了該條約。條約中規定,簽署國之警察及刑事追訴機關執法於恐怖攻擊及跨邊境犯罪時,得向他簽署國處理相關資料之單位請求有關DNA之分析資料、指紋及相關車籍資料。 目前,歐盟資料保護監督機構(European Data Protection Supervisor)已背書支持建立該機制與架構,並且聲明表示,該架構之建立,仍應注意資料保護的相關事項,在追求資料分享更為便利的同時,應給予人民更為足夠的保護,再者,資料處理的權責單位對於不同的資料類型,也應以不同的方式處理之,越敏感性的資料越應限制其使用目的,並且讓越少人得以接觸。
美國國家標準暨技術研究院發布「人工智慧風險管理框架:生成式AI概況」美國國家標準暨技術研究院(National Institute of Standard and Technology, NIST)2024年7月26日發布「人工智慧風險管理框架:生成式AI概況」(Artificial Intelligence Risk Management Framework: Generative Artificial Intelligence Profile),補充2023年1月發布的AI風險管理框架,協助組織識別生成式AI(Generative AI, GAI)可能引發的風險,並提出風險管理行動。GAI特有或加劇的12項主要風險包括: 1.化學、生物、放射性物質或核武器(chemical, biological, radiological and nuclear materials and agents, CBRN)之資訊或能力:GAI可能使惡意行為者更容易取得CBRN相關資訊、知識、材料或技術,以設計、開發、生產、使用CBRN。 2.虛假內容:GAI在回應輸入內容時,常自信地呈現錯誤或虛假內容,包括在同一情境下產出自相矛盾的內容。 3.危險、暴力或仇恨內容:GAI比其他技術能更輕易產生大規模煽動性、激進或威脅性內容,或美化暴力內容。 4.資料隱私:GAI訓練時需要大量資料,包括個人資料,可能產生透明度、個人資料自主權、資料違法目的外利用等風險。 5.環境影響:訓練、維護和運行GAI系統需使用大量能源而影響碳排放。 6.偏見或同質化(homogenization):GAI可能加劇對個人、群體或社會的偏見或刻板印象,例如要求生成醫生、律師或CEO圖像時,產出女性、少數族群或身障人士的比例較低。 7.人機互動:可能涉及系統與人類互動不良的風險,包括過度依賴GAI系統,或誤認GAI內容品質比其他來源內容品質更佳。 8.資訊完整性:GAI可能無意間擴大傳播虛假、不準確或誤導性內容,從而破壞資訊完整性,降低公眾對真實或有效資訊的信任。 9.資訊安全:可能降低攻擊門檻、更輕易實現自動化攻擊,或幫助發現新的資安風險,擴大可攻擊範圍。 10.智慧財產權:若GAI訓練資料中含有受著作權保護的資料,可能導致侵權,或在未經授權的情況下使用或假冒個人身分、肖像或聲音。 11.淫穢、貶低或虐待性內容:可能導致非法或非自願性的成人私密影像或兒童性虐待素材增加,進而造成隱私、心理、情感,甚至身體上傷害。 12.價值鏈和組件整合(component integration):購買資料集、訓練模型和軟體庫等第三方零組件時,若零組件未從適當途徑取得或未經妥善審查,可能導致下游使用者資訊不透明或難以問責。 為解決前述12項風險,本報告亦從「治理、映射、量測、管理」四大面向提出約200項行動建議,期能有助組織緩解並降低GAI的潛在危害。