為促進歐盟境內各成員國的典藏機構(圖書館、資料館、博物館等)之典藏數位化以及數位作品的流通,歐盟於2012年10月28日頒布Directive 2012/28/EU(俗稱孤兒著作指令),本指令允許典藏機構基於「公益」目的利用孤兒著作從事營利之商業行為,並要求各成員國應於2014年10月29日前完成國內法的轉換程序,本指令有以下特色:
(一)界定適用之機構與標的:適用之機構包括各成員國境內為公共利益所建立的公有典藏機構,包括公共圖書館、教育機構、博物館、資料館、電影與錄音典藏單位、公共電視台等。適用標的亦限制在前述機構數位典藏之作品,包括傳統出版品之書籍與報刊雜誌,以及電影、影音與錄音作品等。此外,指令同樣適用於附著在其他作品或構成他作品一部分(如書中的一張照片)的著作物,以及未出版之作品,例如書信、手稿等。
(二)明確定義「勤勉尋找」(diligent search)之最低標準:根據指令第3條第2項規定,所謂「勤勉尋找」之標準可由各會員國自行界定,但至少要包括本指令附件所載之各類資料庫、法定送存處(legal deposit)、以及相關著作權集體管理組織等。
(三)確立孤兒著作狀態相互承認機制:當一項著作在特定會員國被視為孤兒著作時,該效力便及於整個歐盟。另外,本指令第3條第6項亦規定歐盟各成員國應當將孤兒著作之狀態回報給歐盟內部市場調何局(Office for Harmonization in the Internal Market)。
(四)得基於公益性質(public-interest missions)將孤兒著作為商業授權之利用:典藏機構得基於公益性質將孤兒著作為商業授權之利用,特別是為保存或復原典藏物、或提供文化或教育上之近用等,可與其他公、私部門共同利用孤兒著作從事商業授權行為,並將收益彌補因前述典藏數位化所耗費的成本。
從歐盟孤兒著作指令的立法緣由與內容來看,其主要目的係在於釋放公有數位典藏的能量,以便可以達到歐盟在2010年所設定之活絡數位單一市場之目標。另本指令為加速典藏機構針對孤兒著作釋出的配套措施,例如明確定義勤勉搜尋的範圍,以及典藏機構得基於公益性質而將孤兒著作為商業授權之利用等,亦值得我國借鏡。
歐盟執委會(European Commission)於2022年9月28日通過《人工智慧責任指令》(AI Liability Directive)之立法提案,以補充2021年4月通過之《人工智慧法》草案(Artificial Intelligence Act)。鑑於人工智慧產品之不透明性、複雜性且具自主行為等多項特徵,受損害者往往難以舉證並獲得因人工智慧所造成之損害賠償,《人工智慧責任指令》立法提案即為促使因人工智慧而受有損害者,得以更容易獲得賠償,並減輕受損害者請求損害賠償之舉證責任。 《人工智慧責任指令》透過引入兩個主要方式:(一)可推翻之推定(rebuttable presumptions):人工智慧責任指令透過「因果關係推定(presumption of causality)」來減輕受損害者之舉證責任(burden of proof)。受損害者(不論是個人、企業或組織)若能證明人工智慧系統因過失或不遵守法規要求之義務,致其受有損害(包括基本權利在內之生命、健康、財產或隱私等),並且該損害與人工智慧系統之表現具有因果關係,法院即可推定該過失或不遵守義務之行為造成受損害者之損害。相對的,人工智慧之供應商或開發商等也可提供相關證據證明其過失不可能造成損害,或該損害係由其他原因所致,以推翻該損害之推定。(二)證據揭露機制(disclosure of evidence mechanism):若受害者之損害涉及高風險人工智慧時,得要求自該供應商或開發商等處獲取證據之權利。受害者透過證據揭露機制能夠較容易地尋求法律賠償,並得以找出究責的對象。 歐盟執委會認為以安全為導向的《人工智慧法》,為人工智慧訂定橫向規則,旨在降低風險和防止損害,但仍需要《人工智慧責任指令》之責任規定,以確保損害風險出現時,相關賠償得以被實現。但歐盟執委會仍選擇了較小的干預手段,《人工智慧責任指令》針對過失之責任制度進行改革,並未採取舉證責任倒置(a reversal of the burden of proof)之作法,而是透過「可推翻之推定」,一方面減輕受損害者之舉證責任,使受損害者得對影響人工智慧系統並產生過失或侵害行為之人提出損害賠償;另一方面賦予人工智慧之供應商或開發商等有機會推翻前揭造成損害之推定,以避免人工智慧系統之供應商或開發商面臨更高的責任風險,可能阻礙人工智慧產品和服務創新。
美國EPA以強制法制推動大型工業設施導入符合綠色環保、效率節能等新興技術措施為落實推動可謂污染源主要大宗之大型工業設施,積極改善並導入符合綠色環保、效率節能等新興技術或措施,美國環保署(Environmental Protection Agency,EPA)於2010年12月完成「溫室氣體排放量許可方案(Framework for Greenhouse Gas Permitting Programs)」以確保未來國內新設置大型工業設施,其溫室氣體排放量能取得認定,並符合聯邦「清潔空氣法案(Clean Air Act)」許可規範。環保署並將推動各項行動,協助州地方政府調整法令及措施,屆時符合聯邦法規相關要求標準。 依據此方案,自2011年1月起美國境內大型工業設施若有興建或進行重大修改計畫,必須使用能源效率措施、符合效率成本科技來興建,確保能減少溫室氣體排放,並取得符合許可證明,以此模式控制達成美國溫室氣體減量目標。 並且,環保署並同時公佈制訂「特定產業新污染源排放標準(New Source Performance Standards,NSPS)」,而特定產業將包括石化燃料發電廠與煉油廠,兩項目前可謂最大工業污染源;並且所管制的空氣污染源,擴及包括溫室氣體、毒性化學物質,以及六種於「清潔空氣法案(Clean Air Act)」明定指標污染物(Criteria Pollutant)的重大常見空氣污染物。這些NSPS將設立特定產業新工業設施污染物之排放標準限制,並規範控制既有工業設施之空氣污染。美國環保署表示,未來將定期更新這些標準限制,以因應相關科學技術革新。 環保署官員認為,這些推動措施將引領美國企業永續升級,開發更多綠色能源技術,吸引更多投資,並增加整體產業競爭力。然而,環保署這些措施,卻引起美國石油協會(American Petroleum Institute)代表的反彈,並認為環保署這項強制措施是史無前例,亦不符合「清潔空氣法案(Clean Air Act)」立法意旨及規範用意。環保署近來積極推動「溫室氣體排放量許可方案」,以及制訂「特定產業新污染源排放標準」,未來成效如何,及是否得以落實實施,有待後續觀察。
英國綠色投資銀行即將上路英國財政大臣(Chancellor of the Exchequer)George Osborne日前於今(2011)年3月23日發表財政報告時宣佈,英國綠色投資銀行(UK Green Investment Bank, GIB)預計於2012年開始正式對外營業,且其開放對象為各相關產業。而未來英國GIB之營業項目,主要將針對具有高度風險,或是市場成本回收需要長時間等待之相關低碳企劃案進行經費補助,同時亦進一步制定二氧化碳排放價格。 早在2009年2月時,英國三大非營利組織團體E3G、Friends of the Earth、以及Climate Change Capital即共同發表一份聯合聲明提議成立綠色投資銀行,以鼓勵發展低碳經濟。然而,該份提議報告乃至2010年3月才正式獲得政府相關人士的重視,因其意識到綠色投資銀行之成立,也許能符合當前英國對於基礎設施與能源發展之需求。不過,對於綠色投資銀行是否成立之辯論,乃持續到今年3月才正式拍板定案,根據上述之政府財政報告,英國政府計劃於該投資銀行成立後,投注3億英鎊經費投資相關低碳企劃案之推行,並預計於2015年時,另外由私部門投注15億英磅補助相關企劃案,而其經費補助對象層面將以相關產品市場(market)為主。 英國能源與氣候變遷部(Department of Energy and Climate Change)國務卿(Secretary of State)Chris Huhne表示,綠色投資銀行成立後,在結合來自各方之穩定資金下,必能藉由投資綠色能源研發之方式,創造一個穩定且平衡的經濟成長。同時,相關政府單位亦期盼,未來綠色投資銀行除了能提供政府相關領域之經費分配,與研發技術之建議外,亦能以創造具商業價值之產品,達到分散私人投資風險之目的。
新加坡科技與研究局針對未來工廠提出研究規劃及方向新加坡科技與研究局(Agency for Science, Technology and Research)於2017年7月26日提出未來工廠(Toward the factories of the future)概念及相關研究方向,自動化(Automation)、機器人(robotics)、先進電腦輔助設計(advanced computer-aided design)、感測和診斷技術(sensing and diagnostic technologies)將徹底改變現代工廠,可製造的產品範圍廣泛,從微型車乃至於飛機皆可生產。積層製造(Additive Manufacturing),又稱3D列印(3D printing),可使用單一的高科技生產線來創造許多不同的產品項目,而不需要傳統大規模生產的設計限制和成本,伴隨未來高效能電腦和感測技術之進步,積層製造速度也會隨之加快。而智慧工廠(smart factories)將與物聯網(IOT)、雲端計算(cloud computing)、先進機器人(advanced robotics)、即時分析(real-time analytics)與機器學習(machine learning)等技術與積層製造技術結合,將大為提升生產速度及產量。 為加速及改善積層製造的製程,最重要的方法之一,是使用材料物理學的基本原理來模擬製造過程,而近期更引進跨學科之研究,「模擬」最終產品化學成分和機械性能的微觀結構。因積層製造是一個複雜又困難的過程,透過變化既有規則之模擬(Game-Changing simulations),若建立完成模型且模擬成功,將成為積層製造的殺手級技術。在未來的五到十年,我們將看到更多的零件從積層製造技術生產出來,而且這種技術有機會成為未來工廠的生產基礎。由於現行材料及製造流程與機器必須配合一致,些許的差異皆會生產出不同品質之產品,故未來積層製造工廠的結果穩定重現性(repeatability)和標準化(standardization),將是產品商業化的主要障礙與挑戰。