本文為「經濟部產業技術司科技專案成果」
澳洲於2018年2月22日施行個人資料洩漏計畫(Notifiable Data Breaches scheme, NDB scheme),該計畫源於澳洲早在1988年所定「澳洲隱私原則」(Australian Privacy Principles, APPs)之規定。對象包括部分政府機構、年營業額超過300萬澳幣之企業以及私營醫療機構。 根據該計畫,受APPs約束的機構於發生個資洩露事件時,必須通知當事人以及可能會造成的相關損害,另外也必須通知澳洲私隱辦公室(Office of the Australian Information Commissioner, OAIC)相關資訊。 NBD計畫主要內容如下: 一 、規範對象: 包括澳洲政府機構,年營業額超過300萬澳幣企業和非營利組織、私營醫療機構、信用報告機構、信貸提供者、稅號(TFN)受領人。 若數機構共享個人資料,則該告知義務由各機構自行分配責任。 關於跨境傳輸,根據APPs原則,於澳洲境外之機構必須以契約明定受澳洲隱私法規範,原則上若因境外機構有洩漏之虞,澳洲機構也必須負起責任。 二 、個資洩露之認定: 未經授權進入或擅自公開該機構擁有的個人資訊或個人資料滅失。 可能會對一個或多個人造成嚴重傷害(如身分竊盜、導致個人嚴重經濟損失、就業機會喪失、名譽受損等等)。 個資外洩機構無法通過補救措施防止嚴重損害的風險。 三 、OAIC所扮演之角色: 接受個資外洩之通報。 處理投訴、進行調查並針對違規事件採取其他監管行動。 向業者提供諮詢和指導。 四 、於下列情形可免通知義務: 為維護國家安全或增進公共利益所必要。 與其他法案規定相牴觸者。 五 、通知內容: 洩露資料的種類及狀況。 發生個資外洩事件機構之名稱以及聯繫窗口。 個資當事人應採取之後續行動,避免再度造成損害。 惟NBD 計畫對於個人資料的安全性沒有新的要求,主要是對APPs的補充,針對持有個人資料的機構採取合理措施,保護個人資料免遭濫用、干擾或損失, OAIC目前也正在規劃一系列有關個資洩漏事件指導方針及導入說明手冊。
創投業景氣欠佳,政府扮演助力角色在網路泡沫化之後,曾經在九○年代紅極一時的資金投資機構 -- 創業投資 (Venture Capital) 也歷經了前所未有的低潮。創業意願的低落、股市的低迷,使得創投在投資目標的選擇與投資的回收上,都面臨很大的瓶頸。 然而近期以來,在美國,一股對創投支撐的力道,正逐漸成形。這股力量正是來自於各州的政府。目前在美國,除了六個州之外,各州的政府均積極投入創投產業,希望透過創投的中介功能,發展產業。各州政府經由創投發展的產業,主要有生技、醫療設備、軟體、電信、能源、半導體與網路等。 各州政府希望透過創投,發展當地的產業,並提供就業機會。在這波的潮流之下,四十四個州所支持的 151 支創投基金,已為創投業者帶來一股新的希望。
何謂瑞士種子資金投資競賽(Venture Kick)瑞士為縮短新創公司走向市場時間,成立種子資金投資競賽(Venture Kick),透過階段競賽方式,擇選具發展潛力之高科技創新創業團隊,並提供國內外創業輔導資源與資金,促成瑞士創新成果產業化運用之目標。Venture Kick共分為三個階段的競賽:第一階段係針對創新構想(business idea)作評分,每月選出8個團隊作創新構想的報告,另從中取4個團隊進入第二階段,並獲取獎金1萬元;第二階段會就進一步的商業模式作評選,包括經營策略、目標客戶以及策略夥伴等,進入第二階段的3個月內,各團隊藉由專家指導,發展適合之商業模式與經營策略,另再選出一半的團隊進入第三階段評選和獲取獎金2萬,最後階段之評選,擇以協助競賽團隊設立新創公司為目標,競賽團隊應於進入第三階段6個月後完成進入市場準備與提出完整商業營運計畫,最後會從2個團隊中選出1個具發展潛力之競賽團隊給予10萬元之創業基金。截至目前,受到贊助新創公司高達250家,總金額超過1500萬瑞士法郎
醫療物聯網(The Internet of Medical Things, IoMT)醫療物聯網(The Internet of Medical Things, IoMT)之意義為可通過網路,與其它使用者或其它裝置收集與交換資料之裝置,其可被用來讓醫師更即時地瞭解病患之狀況。 就運用的實例而言,於診斷方面,可利用裝置來連續性地收集關鍵之醫學參數,諸如血液生化檢驗數值、血壓、大腦活動和疼痛程度等等,而可幫助檢測疾病發作或活動的早期跡象,從而改善反應。於療養方面,由於患者的手術後恢復時間是整個成本花費之重要部分,故縮短療養時間是減少成本之重要要素。可利用穿戴式感測器來幫助運動、遠端監控,追蹤各種關鍵指標,警示護理人員及時作出回應,並可與遠距醫療相結合,使加速恢復更加容易。於長期護理方面,可藉由裝置之測量與監控來避免不良結果與延長之恢復期。 由於機器學習和人工智慧之共生性增長,醫療物聯網之價值正在增強。於處理來自於感測器醫療裝置之大量連續資訊流時,資料分析和機器學習可更快地提供可據以執行之結論以幫助治療過程。惟醫療物聯網亦可能面臨安全與標準化之挑戰。由於醫療保健的資料是駭客的主要目標,任何與網路連接之設備都存在安全性風險。此外,隨著相關裝置被廣泛地運用,即需要標準化以便利裝置之間的通訊,製造商和監管機構皆需尋找方法來確保裝置可在各種平台上安全地通訊。