本文為「經濟部產業技術司科技專案成果」
美國聯邦通訊委員會(The Federal Communications Commission, FCC)擬於3月17日向國會提出未來的國家寬頻計畫,並預計於2012年開始,調整目前用來補助電話服務的普及服務基金(Universal Service Fund),以推動高速網際網路。 美國普及服務基金的建立,原本是用以確保所有美國居民接取基本的電話網路。依目前的普及服務基金計畫,除了補助低收入居民電話服務、學校與圖書館的網際網路接取,與鄉間醫療單位的高速網路連結之外,最主要部份是對於由民營事業建設網路不符經濟效益的偏遠鄉區提供電話服務;此部份基金的預算是來自電信業者跨州與國際長途電話收益之稅收,於2010年達約為80億美元,未來將轉作推動寬頻網路之用,至於普及服務基金中的其他部份,則將繼續維持。 在FCC的計畫中,不僅在普及服務基金下設立連結美國基金(Connect America Fund)來補助寬頻服務,並將設立行動基金(Mobility Fund)發展3G無線網路。另外,FCC預計向國會提出的計畫包含多項選擇,包括在不要求國會另行增加預算下,達成在2020年99%美國家戶接取寬頻之目標,以及經由國會同意於未來三年投入額外的90億美元,以加速寬頻網路建設等方案。
歐洲藥品管理局更新利益衝突規範歐洲藥品管理局(The European Medicines Agency,EMA)於3月底至6月初陸續發布四份利益衝突範。包括「處理管理董事會利益衝突政策方針」(European Medicines Agency Policy on the Handling of Conflicts of Interests of the Management Board),將董事會自過去的利益衝突獨立出來單獨規範;並針對違反利益聲明揭露訂立「EMA科學委員會和專家違反利益衝突信賴程序」(European Medicines Agency Breach of Trust Procedure on Conflicts of Interests for Scientific Committee Members and Experts),和「EMA管理董事會違反利益衝突信賴程序」(European Medicines Agency Breach of Trust Procedure on Conflicts of Interests for Management Board Members);以及修定「處理管理董事會、科學委員會成員和專家利益衝突政策方針」(European Medicines Agency Breach of Trust Procedure on Conflicts of Interests for Scientific Committee Members and Experts)。 針對專家和管理董事會所制定的處理利益衝突規範,主要目的是確保兩者在參與EMA的活動時,不會發生與醫藥業者相關聯的利益衝突,影響EMA公正性。觀察上述規範,可以發現EMA對於專家和管理董事會兩者的規範原則相當一致,皆聚焦於增進利益衝突處理過程的強健性(robustness)、有效性(efficiency)和透明性(transparency)。分別規範的原因在於兩者功能上的區別,分述如下: 1. 專家規範層面,有鑒於在先進醫藥領域中的專家有限,缺少可替代性,因此規範目的在於兼顧公正性與專業之間的平衡; 2. 管理董事會層面,由於其主要任務為監管和決策,規範上區別成員所參與活動的程度和範圍做更為細部的規範,與專家不同,並非有利益衝突就必須迴避。 為進一步加強EMA處理利益衝突的強健性,EMA科學委員會和專家,以及管理董事會違反利益衝突信賴程序的主要規範內容為專家和管理董事會成員作出不實利益聲明時,EMA的處理程序。可區分為調查、聽證與修正三個階段,分述如下: 1.調查階段,首先調查系爭當事人是否為不實之利益聲明後,評估是否啟動違反利益衝突信賴程序; 2.聽證階段,召開聽證會,聽證系爭當事人陳述觀點。倘若確定違反利益衝突信賴,系爭當事人即自EMA除名; 3.修正階段,EMA將審查系爭當事人曾經參與科學審查案件的公正性,並評估是否進行補救措施。 雖然EMA對於專家是否確實聲明利益缺少強制力,然而仍能透過新的利益衝突機制設計,看出EMA對完善利益衝突規範的企圖,值得近來正在修訂利益衝突機制的我國學習。
歐洲專利局發布人工智慧與機器學習專利審查指南正式生效歐洲專利局(European Patent Office, 下稱EPO)於2018年11月1日發佈新版專利審查指南已正式生效。此次新版的焦點為Part G, Chapter II, 3.3.1關於人工智慧(Artificial Intelligence, AI)與機器學習(Machine Learning, ML)的可專利性審查細則。 在新版審查指南Part G, Chapter II, 3.3中指出數學方法本身為法定不予專利事項,然而人工智慧和機器學習是利用運算模型和演算法來進行分類、聚類、迴歸、降維等發明,例如:神經網路、遺傳演算法、支援向量機(Support Vector Machines, SVM)、K-Means演算法、核迴歸和判別分析,不論它們是否能夠藉由數據加以訓練,此類運算模型和演算法本身,因具有抽象的數學性質而不具專利適格性。 其中,EPO亦針對人工智慧和機器學習相關應用舉例下列特殊情形,說明可否具備發明技術特徵: (一)可能具技術性 在心臟監測儀器運用神經網路辨別異常心跳,此種技術為具有技術貢獻。 基於低階特徵(例如:影像邊緣、像素數值)的數位影像、影片、音頻或語言訊號分類,屬於分類演算法的技術應用。 (二)可能不具技術性 根據文字內容進行分類,本身不具技術目的,而僅是語言學的目的(T 1358/09) 對抽象數據或電信網路數據紀錄進行分類,但未說明所產生分類的技術用途,亦被認定本身不具技術目的,即使該分類演算法的數據價值高(例如:穩健性)(T 1784/06)。 在新版審查指南中亦指出,當分類方法用於技術目的,其產生之訓練集(training set)和訓練分類器(training the classifier)的步驟,則能被視為發明的技術特徵。 近年來,人工智慧技術的應用分佈在我們的生活中,無論是自駕車、新藥開發、語音辨識、醫療診斷等,隨著人工智慧和機器學習技術快速發展,新版的審查指南將為此技術訂定可專利性標準,EPO未來要如何評判人工智慧和機器學習相關技術,將可透過申請案之審查結果持續進行關注。 「本文同步刊登於TIPS網站(https://www.tips.org.tw )」
德國聯邦內政部提出「資訊科技安全法」(草案),保障關鍵基礎設施及資訊安全德國聯邦內政部繼與德國聯邦經濟暨能源部與交通暨數位基礎設施部共同擬定之「數位議程2014 - 2017」(Digitale Agenda 2014 – 2017)政策裏,於本年8月19日提出資訊科技安全法(草案)(IT-Sicherheitsgesetz)。該草案的提出目的為保障德國公民與企業使用的資訊系統安全,特別是在全國數位化進程中,攸關國家發展的關鍵基礎設施。德國內政部長de Maizière在新聞發表會上,宣稱要讓德國成為全球資訊科技系統及數位基礎設施安全的先驅與各國的模範。除外,亦欲藉此強化德國資訊科技安全企業的競爭力,提升外銷實力。 該草案的主要對象係關鍵基礎設施營運者(Kritische Infrastrukturbetreiber),例如在能源、資訊科技、電信、運輸和交通、醫療、水利、食品、金融與保險等領域的企業。「關鍵基礎設施」的定義並未涵蓋德國聯邦政府部門之間使用的數據通信系統。不過,究竟係在這些基礎設施領域的哪些企業該受到資訊科技法的約束,德國內政部將陸續與各相關部會研討後再以行政法規的方式明確表列出來。 關鍵基礎設施企業必須採取適當的保護措施以保障關鍵基礎設施的正常運行。所採取的保護措施可符合同業或同業公會裡所認可的最新資訊安全標準,且得符合一定的付出成本比例。不過衡量標準,最後還是得由德國聯邦資訊安全局(Bundesamt für Sicherheit in der Informationstechnik, BSI)〉做認定。上述之企業需兩年內完成安全防護措施的設置。為防止電信系統非法入侵,該草案也修增德國電信法(Telekommunikationsgesetz)為施予電信業者更高的資訊安全防護標準。針對網際網路服務提供者(Internet Service Providers, ISP)也特別施加設置防範駭客攻擊的尖端防護措施義務。 關鍵基礎設施業者的資訊安全系統均須透過德國聯邦資訊安全局(Bundesamt für Sicherheit in der Informationstechnik, BSI)每兩年定期審核,若沒通過則會被要求依德國聯邦資訊安全局的標準去處裡該安全漏洞。 若是上述業者的資訊安全系統有受損,並且可導致關鍵基礎設施的故障或損毀,該企業需通報德國聯邦資訊安全局,且該記錄可匿名化。但是,若是因駭客攻擊直接導致關鍵基礎設施的故障或損毀,該企業則需立即通報德國聯邦資訊安全局,不可匿名。