本文為「經濟部產業技術司科技專案成果」
新加坡國家研究基金會(National Research Foundation,以下簡稱NRF)於2017年5月3日宣布AI.SG倡議,並將啟動國家級AI計畫。NRF將於五年內投資新加坡幣1.5億元,整合NRF,智慧國家與數位政府辦公室(Smart Nation and Digital Government),經濟發展委會(Economic Development Board),資通訊媒體發展局(Infocomm Media Development Authority),新加坡創新機構(SGInnovate)及整合健康資訊系統(Integrated Health Information Systems)等數個政府部門,以及位於新加坡的研究機構、AI新創公司與發展AI產品的企業等共同投入。計畫三大目標如下: 利用人工智慧來解決影響社會和產業的重大挑戰 這些應用包括利用人工智慧解決交通尖峰時段壅塞問題,或應付人口老齡化帶來的醫療保健挑戰。IHiS執行長兼衛生部資訊長Mr.Bruce Liang表示:「醫療照護是需要高度知識及人性化的行業。多年來從新加坡在醫療照護數位化的發展中,可預見AI未來對於提升新加坡人民健康有很大幫助。例如在疾病預防、診斷、治療計畫、藥物治療、精準醫療、藥品開發等方面皆可發揮作用。醫護人員再加上AI工具,可以更完善解決未來對於醫療照護需求的增加。」 投入並深化技術能力,以掌握下一波科技創新 其中包括可展現更多人類學習能力的下一代「可解釋的人工智慧」 (Explainable Artificial Intelligence,XAI),以及相關技術,例如電腦系統架構(軟體、韌體、硬體整合)和認知科學(Cognitive Science)。NRF獎助金和研究計畫將會支持相關科學活動。當地人才也將透過參與AI深度功能的開發進行培訓。 擴大產業對於AI和機器學習的使用 AI.SG將與公司合作,利用AI來提高生產力,創造新產品,並輔導相關解決方案從實驗室進入市場。目標將支持100個AI研發項目和概念驗證,以利用戶能快速解決實際問題。並預計針對金融,醫療照護和城市管理解決方案領域具有特殊的潛力者先著手進行。 AI.SG計畫此項推動工作,未來不僅將可激發新加坡的研究人員和用戶利用AI解決社會重大問題,也將影響全世界渴望利用人工智慧技術帶來更便利的生活,值得我國相關機關推動政策之參考依據。
美國衛生及公共服務部提出策略草案,以緩解健康資訊科技對醫護人員所造成的負擔美國衛生及公共服務部(U.S. Department of Health and Human Services, HHS)依21世紀醫療法(21st Century Cures Act)於2018年11月28日公布由國家健康資訊技術協調辦公室(Office of the National Coordinator for Health Information Technology, ONC)與美國聯邦醫療保險和補助服務中心(Centers for Medicare & Medicaid Services, CMS)共同起草的「減輕使用健康資訊科技及電子健康紀錄所造成的管制與行政負擔之策略(Strategy on Reducing Regulatory and Administrative Burden Relating to the Use of Health IT and EHRs)」草案,以緩解健康資訊科技(Health Information Technology)於臨床使用的負擔。 雖然資通訊科技的進步促進許多產業的發展,卻在醫療產業造成應用上的問題,如臨床醫師會花費更多的時間、人力成本於登載電子健康紀錄,而壓縮與患者溝通的時間。為改善這些問題,此草案針對臨床紀錄建檔(Clinical Documentation)、健康資訊科技的可用性與使用者經驗(Health IT Usability and the User Experience)、電子健康紀錄報告(EHR Reporting)、及公共衛生報告(Public Health Reporting)四大議題提出相對應的策略及建議採用的措施。並以三個主要方向為討論主軸:降低臨床醫師紀錄患者健康資訊所耗費的人力時間成本、降低臨床醫師、醫院與健康照護機構(health care organizations)為達到報告規範標準而耗費的人力時間成本、及促進電子健康紀錄在使用上的功能性與直覺性(functionality and intuitiveness),以期能促進醫病溝通,並進一步完善健康照護環境。此草案在2019年1月28日前開放公眾提出建議,並預計於2019年年底公布最終版本。
合成資料(synthetic data)「合成資料」(synthetic data)的出現,是為了保護原始資料所可能帶有的隱私資料或機敏資料,或是因法規或現實之限制而無法取得或利用研究所需資料的情況下,透過統計學方法、深度學習、或自然語言處理等方式,讓電腦以「模擬」方式生成研究所需之「合成資料」並進行後續研究跟利用,透過這個方法,資料科學家可以在無侵犯隱私的疑慮下,使合成資料所訓練出來的分類模型(classifiers)不會比原始資料所訓練出來的分類模型差。 在合成資料的生成技術當中,最熱門的研究為運用「生成對抗網路」(Generative Adversarial Network, GAN)形成合成資料(亦有其他生成合成資料之方法),生成對抗網路透過兩組類神經網路「生成網路」(generator)與辨識網路(discriminator)對於不同真偽目標值之反覆交錯訓練之結果,使其中一組類神經網路可生成與原始資料極度近似但又不完全一樣之資料,也就是具高度複雜性與擬真性而可供研究運用之「合成資料」。 英國國防科技實驗室(Defense Science and Technology Laboratory, DSTL)於2020年8月12日發布「合成資料」技術報告,此技術報告為DSTL委託英國航太系統公司(BAE Systems)的應用智慧實驗室(Applied Intelligence Labs, AI Labs)執行「後勤科技調查」(Logistics Technology Investigations, LTI)計畫下「資料科學與分析」主題的工作項目之一,探討在隱私考量下(privacy-preserving)「合成資料」當今技術發展情形,並提供評估技術之標準與方法。 技術報告中指出,資料的種類多元且面向廣泛,包含數字、分類資訊、文字與地理空間資訊等,針對不同資料種類所適用之生成技術均有所不同,也因此對於以監督式學習、非監督式學習或是統計學方法生成之「合成資料」需要採取不同的質化或量化方式進行技術評估;報告指出,目前尚未有一種可通用不同種類資料的合成資料生成技術或技術評估方法,建議應配合研究資料種類選取合適的生成技術與評估方法。
中國大陸重新核定農業轉殖基因安全評估試驗收費標準中國大陸國家發展改革委員會及財政部重新核定農業轉殖基因安全評估試驗收費標準,擴大相關試驗範圍,並於去(2005)年12月29日公告實施,有效期2年,而農業部2003年的第303號公告同時廢止。2003年的公告僅針對「環境安全檢測」與「食用安全檢測」訂定收費標準,但是隨著基改作物種植面積與種類逐年增加,因此增列了中間試驗、環境釋放、生產性試驗在進行安全評價時,也需要收取相關費用。