瑞士ESG新法規正式生效

  全球多個國家目前正在促進企業推動「環境、社會和公司治理」(Environment, Social Responsibility, Corporate Governance, ESG)事務,以瑞士為例,有關ESG的新法規於2022年1月1日正式生效。

  在2022年1月1日生效的提案中,主要是對《瑞士債法典》(The Swiss Code of Obligations, CO)提出修正,包含「涉及公共利益(public interest)的企業應提出ESG事項報告」與「企業應就有無使用童工及衝突地區的礦物金屬進行盡職調查(Due Diligence)」,分別說明如下:

一、公共利益企業應提出ESG事項報告

依《瑞士債法典》第32章新增的第6節「非財務事項之透明度」(Transparency on Non-Financial Matters)規定,符合條件的上市公司或受監管實體等公共利益企業,每年應提出一份單獨的非財務事項報告,內容須涵蓋環境事項、社會問題、員工相關問題、尊重人權和打擊腐敗等議題,以及公司對該等議題所提出的政策措施、風險評估和實施績效等資訊。此報告經企業內部最高管理層與治理機構批准後,須立即於網路上公開,並確保至少十年內可供公眾存取。

二、企業應就有無使用童工及衝突地區的礦物金屬進行盡職調查

依《瑞士債法典》第32章新增的第8節「與來自受衝突影響地區的礦物金屬以及童工相關的盡職調查和透明度」(Due Diligence and Transparency in relation to Minerals and Metals from Conflict-Affected Areas and Child Labour)規定,所在地、總部或主要營業地點位於瑞士的企業,如在瑞士自由流通或加工來自受衝突影響和高風險地區(conflict-affected and high-risk areas)的特定礦物或金屬,抑或產品或服務被合理懷疑是使用童工製造或提供而成,原則上即須遵守供應鏈中的盡職調查義務,每年亦應將其遵守情況編制成報告。此報告應在會計年度結束後的六個月內於網路上發布,並確保至少十年內可供公眾存取。

相關連結
※ 瑞士ESG新法規正式生效, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?no=55&tp=1&d=8795 (最後瀏覽日:2024/05/23)
引註此篇文章
你可能還會想看
用ChatGPT找法院判決?從Roberto Mata v. Avianca, Inc.案淺析生成式AI之侷限

用ChatGPT找法院判決?從Roberto Mata v. Avianca, Inc.案淺析生成式AI之侷限 資訊工業策進會科技法律研究所 2023年09月08日 生成式AI是透過研究過去資料,以創造新內容和想法的AI技術,其應用領域包括文字、圖像及影音。以ChatGPT為例,OpenAI自2022年11月30日發布ChatGPT後,短短二個月內,全球月均用戶數即達到1億人,無疑成為民眾日常生活中最容易近用的AI科技。 惟,生成式AI大量使用後,其中的問題也逐漸浮現。例如,ChatGPT提供的回答僅是從所學習的資料中統整歸納,無法保證資料的正確性。Roberto Mata v. Avianca, Inc.案即是因律師利用ChatGPT撰寫訴狀,卻未重新審視其所提供判決之正確性,以致後續引發訴狀中所描述的判決不存在爭議。 壹、事件摘要 Roberto Mata v. Avianca, Inc.案[1]中,原告Roberto Mata於2019年8月搭乘哥倫比亞航空從薩爾瓦多飛往紐約,飛行過程中膝蓋遭空服員的推車撞傷,並於2022年2月向法院提起訴訟,要求哥倫比亞航空為空服員的疏失作出賠償;哥倫比亞航空則主張已超過《蒙特婁公約》(Montreal Convention)第35條所訂之航空器抵達日起兩年內向法院提出損害賠償之請求時效。 R然而,法院審理過程中發現原告訴狀內引用之六個判決無法從判決系統中查詢,進而質疑判決之真實性。原告律師Steven A. Schwartz因而坦承訴狀中引用的六個判決是ChatGPT所提供,並宣稱針對ChatGPT所提供的判決,曾多次向ChatGPT確認該判決之正確性[2]。 貳、生成式AI應用之潛在風險 雖然運用生成式AI技術並結合自身專業知識執行特定任務,可能有助於提升效率,惟,從前述Roberto Mata v. Avianca, Inc.案亦可看出,依目前生成式AI技術之發展,仍可能產生資訊正確性疑慮。以下彙整生成式AI應用之8大潛在風險[3]: 一、能源使用及對環境危害 相較於傳統機器學習,生成式AI模型訓練將耗費更多運算資源與能源。根據波士頓大學電腦科學系Kate Saenko副教授表示,OpenAI的GPT-3模型擁有1,750億個參數,約會消耗1,287兆瓦/時的電力,並排放552噸二氧化碳。亦即,每當向生成式AI下一個指令,其所消耗的能源量相較於一般搜尋引擎將可能高出4至5倍[4]。 二、能力超出預期(Capability Overhang) 運算系統的黑盒子可能發展出超乎開發人員或使用者想像的隱藏功能,此發展將會對人類帶來新的助力還是成為危險的阻力,則會隨著使用者之間的相互作用而定。 三、輸出結果有偏見 生成式AI通常是利用公開資料進行訓練,若輸入資料在訓練時未受監督,而帶有真實世界既存的刻板印象(如語言、種族、性別、性取向、能力、文化等),據此建立之AI模型輸出結果可能帶有偏見。 四、智慧財產權疑慮 生成式AI進行模型訓練時,需仰賴大量網路資料或從其他大型資料庫蒐集訓練資料。然而,若原始資料來源不明確,可能引發取得資料未經同意或違反授權條款之疑慮,導致生成的內容存在侵權風險。 五、缺乏驗證事實功能 生成式AI時常提供看似正確卻與實際情形不符的回覆,若使用者誤信該答案即可能帶來風險。另外,生成式AI屬於持續動態發展的資訊生態系統,當產出結果有偏誤時,若沒有大規模的人為干預恐難以有效解決此問題。 六、數位犯罪增加與資安攻擊 過去由人工產製的釣魚郵件或網站可能受限於技術限制而容易被識破,然而,生成式AI能夠快速建立具高度說服力的各種擬真資料,降低詐騙的進入門檻。又,駭客亦有可能在不熟悉技術的情況下,利用AI進一步找出資安弱點或攻擊方法,增加防禦難度。 七、敏感資料外洩 使用雲端服務提供商所建立的生成式AI時,由於輸入的資料存儲於外部伺服器,若要追蹤或刪除有一定難度,若遭有心人士利用而導致濫用、攻擊或竄改,將可能產生資料外洩的風險。 八、影子AI(Shadow AI) 影子AI係指開發者未知或無法控制之AI使用情境。隨著AI模型複雜性增加,若開發人員與使用者未進行充分溝通,或使用者在未經充分指導下使用 AI 工具,將可能產生無法預期之風險。 參、事件評析 在Roberto Mata v. Avianca, Inc.案中,法院關注的焦點在於律師的行為,而非對AI技術使用的批判。法院認為,隨著技術的進步,利用可信賴的AI工具作為協助用途並無不當,惟,律師應踐行其專業素養,確保所提交文件之正確性[5]。 當AI科技發展逐漸朝向自主與獨立的方向前進,仍需注意生成式AI使用上之侷限。當個人在使用生成式AI時,需具備獨立思考判斷的能力,並驗證產出結果之正確性,不宜全盤接受生成式AI提供之回答。針對企業或具高度專業領域人士使用生成式AI時,除確認結果正確性外,更需注意資料保護及治理議題,例如建立AI工具合理使用情境及加強員工使用相關工具之教育訓練。在成本能負擔的情況下,可選擇透過企業內部的基礎設施訓練AI模型,或是在訓練模型前確保敏感資料已經加密或匿名。並應注意自身行業領域相關法規之更新或頒布,以適時調整資料使用之方式。 雖目前生成式AI仍有其使用之侷限,仍應抱持開放的態度,在技術使用與風險預防之間取得平衡,以能夠在技術發展的同時,更好地學習新興科技工具之使用。 [1]Mata v. Avianca, Inc., 1:22-cv-01461, (S.D.N.Y.). [2]Benjamin Weiser, Here’s What Happens When Your Lawyer Uses ChatGPT, The New York Times, May 27, 2023, https://www.nytimes.com/2023/05/27/nyregion/avianca-airline-lawsuit-chatgpt.html (last visited Aug. 4, 2023). [3]Boston Consulting Group [BCG], The CEO’s Roadmap on Generative AI (Mar. 2023), https://media-publications.bcg.com/BCG-Executive-Perspectives-CEOs-Roadmap-on-Generative-AI.pdf (last visited Aug. 29, 2023). [4]Kate Saenko, Is generative AI bad for the environment? A computer scientist explains the carbon footprint of ChatGPT and its cousins, The Conversation (May 23, 2023.), https://theconversation.com/is-generative-ai-bad-for-the-environment-a-computer-scientist-explains-the-carbon-footprint-of-chatgpt-and-its-cousins-204096 (last visited Sep. 7, 2023). [5]Robert Lufrano, ChatGPT and the Limits of AI in Legal Research, National Law Review, Volume XIII, Number 195 (Mar. 2023), https://www.natlawreview.com/article/chatgpt-and-limits-ai-legal-research (last visited Aug. 29, 2023).

Smart City的進化:Super City

  日本內閣為實現「Super City」的構想,於2020年2月4日通過《國家戰略特別區域法》部分條文修正案並提交國會審議,擬透過自駕車、無人機物流、遠距醫療等結合社區總體營造,以因應高齡化社會和解決人力不足等課題為目標。   「Super City」係指充分活用第四次工業革命中,人工智慧及大數據等各項最先進技術,領先實現未來生活方式的「完全的未來都市」。不僅在複數領域的智慧化措施中導入管制革新,同時也於生活中實踐,旨在解決社會中的各項課題。「Super City」可說是較早推動的「Smart City」進化版。Smart City具體推動範圍侷限於能源、交通等個別領域的尖端技術實證,而Super City則是以未來都市的整體創建為目標。即Super City的推動至少會同時涵蓋5個領域以上的生活中各項智慧科技,如物流、支付、行政、醫護、教育、環境、防災等;不僅有技術上的實證,更看重先行於未來社會的生活中實現;最重要的是會從居民的角度,而非從技術開發端、供給端,來追求理想的未來社會。   不過現行法規對於Super City的實現是有所侷限的,目前日本雖可依《國家戰略特別區域法》,由國家指定特定地區並實施管制鬆綁、制度改革等特例措施,但在推動管制革新以執行各種近未來技術之實證方面,尚需個別與相關主管機關協商,因此經常耗費數月至數年的時間成本。本次修法將強化各相關主管機關的合作,將制定基本方針明定具體的合作程序,而城市間的合作強化則將會整備開放API(Open Application Programming. Interface)規則及法規;另外Super City的實現需要蒐集、整理各領域之資料,因此擬將「資料協作基盤整備事業」列為法定計畫,且事業實施主體可要求國家及地方政府提供其所擁有的資料;由於Super City的推動將會同時涵蓋多個不同領域,為使各領域的管制革新具整體性且能同時實現,修正案中也規範Super City事業計畫的認定程序。

歐盟2019電子政府基準報告

  歐盟執委會(European Commission, EC)於2019年10月18日發布電子政府基準報告(eGovernment Benchmark 2019: trust in government is increasingly important for people)。電子政府基準是歐盟的年度檢測工具,用以確認公部門中資通訊技術使用狀況,亦是歐盟2016-2020年的重點政策之一:2016年4月,歐盟執委會發布「歐盟e政府四年行動計畫」(EU eGovernment Action Plan 2016-2020),歐盟應致力落實「公共行政現代化」、「跨境數位行動服務」和「加強公部門與公民和企業的數位互動」等三面向。電子政府基準報告即因應此一政策方向而生。   電子政府基準的評測指標有四:以使用者為中心(User centricity)、透明度(Transparency)、跨境移動(Cross-border mobility)、其他關鍵促成因素(Key enablers)。報告中評估2019年總體表現最佳的國家是馬爾他、奧地利等;立陶宛和芬蘭等國則為其次;表現低於平均者則多為東南歐國家。報告中亦提到,現階段公民已十分容易在機關官網上取得所需資訊,但相較於提供給一般公民的服務,機關官網對企業提供之服務通常更加完整及清楚。另外,在推行各項電子政府措施時,公民對政府的信任益發重要。唯有公民信任該機關,包含對機關安全在線服務、個人資料透明度、公共網路安全等的信賴,機關數位化改革才能常態運作。因此,電子政府的發展是建立在人們信任相關數位服務,並與政府交流時更容易知悉並利用該服務。   再觀我國電子化政府之發展,自民國87年至今已進入第五階段。初期致力建設政府骨幹網路和電子認證、90年代持續深化及擴大政府網路應用,並推動10大旗艦計畫實現網路政府主動、分眾、持續及紮根之服務。101年後建構電子化政府之設備、網路和應用服務,發展資訊服務系統整合、全程服務及跨部門協調。近期分別有「第五階段電子化政府計畫-數位政府」和「服務型政府推動計畫」,以資料驅動、公私協力、以民為本之核心理念,透過巨量資料、開放資料和服務個人化等工具,發展跨機關一站式整合服務及打造多元協作環境,落實數位政府服務。

桃莉羊誕生十年 複製技術之醫療運用距收成階段仍遙遠

  十年前的 7 月 5 日 ,全世界第一隻複製的哺乳類動物桃莉羊在英國誕生。 複製羊成功的案例,吸引了如潮水般的錢潮,流入探索利用這項新技術的領域,諸如有關治療癌症、心臟病、阿茲海默症和其他嚴重疾病的研究。科學家應用在姚莉身上的技術是屬於「細胞核轉置技術」( SCNT ),簡言之,是把卵子的細胞核取出,然後把身體細胞的細胞核放入這個卵子中。在這個新建構的卵子中,只有來自身體細胞的染色體,而沒有原卵子的染色體,新卵子中僅含有提供身體細胞者的基因組,所以稱之為「複製」。科學複製有很大的潛在風險,代價又高,但它對醫學研究仍有很大的貢獻,其中最引人注意的,就是可取得胚胎幹細胞。   幹細胞是一群尚未完全分化的細胞,同時具有分裂增殖成另一個與本身完全相同的細胞,以及分化成為多種特定功能的體細胞兩種特性,在生命體由胚胎發育到成熟個體的過程中,扮演最關鍵性的角色。研究人員相信未來可以利用幹細胞,修復或是更換受傷或是病變的器官中的細胞或組織,特別是利用有患者自己基因的幹細胞組織移植,可以避免免疫系統的排斥現象。   當年科學家複製桃莉羊時所抱持之野心不小,然而這十年來,科學家們並沒有能夠達成以幹細胞治療人類疾病的目標,雖然因複製 技術本身具有高度爭議性,許多國家已立法予以規制,然卻依舊無法避免如 前首爾大學教授黃禹錫偽造幹細胞研究成果的醜聞發生,這項醜聞使原本即因幹細胞研究和倫理會產生衝突而不易獲得公私部門經費支持的研究工作,更為雪上加霜。   英國胚胎學者指出,回顧過去醫學研究史上的新發現,不論是試管嬰兒或是其他的技術,從第一次到最後技術完全成熟階段,都需要花很長的時間一步步完成,未來可能還需要五十年的時間,複製技術對醫學的貢獻才可能到達豐收階段。

TOP