美國第七巡迴上訴法院於Wallace v. IBM, Red Hat, and Novell 一案認定GPL或自由軟體授權模式不違反聯邦反托拉斯法

  美國第七巡迴上訴法院( U.S. Court of Appeals (7thCir) )最近就 Wallace v. IBM, Red Hat, and Novell 一案做出判決,本案爭執重點在於 GPL 授權條款與反托拉斯法之間的關係,美國第七巡迴上訴法院認為 GPL 授權條款並不違反反拖拉斯法,法院也同時明確表示,一般而言自由軟體無須擔心會違反反托拉斯法。


  本案上訴人
Daniel Wallace 係程式設計師,其欲販售由 BSD Berkeley Software Distribution )所開發出來的競爭軟體給各級學校。 BSD Linux 的衍生版本,而 Linux 作業系統則是屬於自由軟體的一種,想要使用 Linux 的人就必須遵守 GPL 授權條款。依 GPL 授權條款規定,不論 Linux Linux 之衍生著作均不得收取授權費用,上訴人因此指控 IBM Red Hat Novell 與自由軟體協會涉嫌共謀將軟體價格設定在零,涉嫌以掠奪性定價( predatory pricing claim )方式削減作業系統市場之競爭,已違反反托拉斯法。


  法院認為,本案並無法主張掠奪性定價,蓋被上訴人
IBM Red Hat Novell 並無法因此而取得獨佔價格,其授權價格之所以為零乃是遵照 GPL 授權條款的結果,且消費者並未因此受到損害。其次,法院也指出,著作權法通常對他人之改作權加以限制,其目的是為了收取授權金,不過著作權法人亦可用以確保自由軟體維持零授權金,因此任何嘗試想要販售自由軟體之衍生著作者,將會違反著作權法,即令改作人不同意接受 GPL 授權條款的約束。

本文為「經濟部產業技術司科技專案成果」

相關連結
※ 美國第七巡迴上訴法院於Wallace v. IBM, Red Hat, and Novell 一案認定GPL或自由軟體授權模式不違反聯邦反托拉斯法, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=605&no=57&tp=1 (最後瀏覽日:2025/11/21)
引註此篇文章
你可能還會想看
落實資訊傳遞之流程透明與提昇效率,英國成立照護資訊標準化委員會

  資訊的保密機制和數據的標準化是當代的醫護過程中,相當關鍵重要的一部分,使得資訊得以安全地蒐集、記錄和交換,同時也是衛生照護系統在品質和服務管理上得以維繫的關鍵。過去英國負責處理醫療資訊交換標準的單位為「衛生和社會照護資訊標準委員會(Information Standards Board for Health and Social Care, ISB)」,負責就國家性的資料標準進行評核、統一資料標準格式,進而符合國際規範。為了因應國家治理在資訊標準、資料收集和資料提取上新的規劃,自今(2014)年4月1日起,ISB轉型為照護資訊標準化委員會(Standardisation Committee for Care Information, SCII)。   新的照護資訊標準化委員會-SCCI主要負責發展、批准並保障資訊標準、資料蒐集與資料提取。該委員會的成員組成廣泛地來自國家單位和相關衛生、照護服務組織。現階段的主要目標為標準化醫院和家庭醫生之間的醫療資訊交換,將醫療資訊標準提升至國家層級,透過該委員會的運作來監督、改善照護服務、照護系統和資訊的處理方式,進而達到流程公開和運作透明。以下為ISB轉型為SCCI之主要原因: 1、2012衛生和社會照護法(Health and Social Care Act 2012)之規定,該法§250賦予衛生部長和NHS England(英國國家健康服務)發布資訊標準的權力; 2、NHS成立新的國家資訊委員會(National Information Board, NIB),該委員會前身為資訊服務調查小組(Information Services Commissioning Group, ISCG),主要針對衛生和社會照護提供國家層級的資訊服務整合規劃,以確保資訊標準統一,使得不同IT系統間得以相互傳輸、驅動更多整合服務給人民。SCCI即隸屬於NIB,負責識別、調查和完整執行資訊標準、資料蒐集和提取。 3、衛生部於2012年發布衛生和照護系統的10 年資訊策略(ten year information strategy for the health and care system)。

SWIFT與金融業者攜手合作發展區塊鏈電子投票

  環球銀行金融電信協會(Society for Worldwide Interbank Financial Telecommunication, SWIFT)於今年3月宣布將與德意志銀行、星展銀行、匯豐銀行、渣打銀行、證券軟體供應商SLIB與新加坡交易所(Singapore Exchange,SGX)聯合於亞太地區展開建構於分散式帳簿技術(Distributed Ledger Technology ,DLT)之電子投票概念性驗證(Proof-of-Concept, PoC),探究分散式帳簿技術是否能有效簡化股東權利之行使,以提高市場參與者效率。   目前實務上召集股東會耗費大量人力與時間成本,紙本投票流程繁雜且費時,股東表決權也經常因代理行使錯誤導致無法及時反應股東真意,因此業界希望可以透過將區塊鏈分散式帳簿技術應用於電子投票系統,改善股東會之透明度與自動化程度,提升股東會之效能及股東參與度。   SWIFT表示區塊鏈電子投票概念性驗證將於2019年上半年展開, 旨在體現四大目標: 測試與發行人和證券存託機構(Central Securities Depository)建立的投票解決方案,同時該方案係以許可制的私有鏈(private blockchain)儲存與管理數據資訊。 展現基於ISO 20022所為之混合解決方案之可行性,將訊息之傳遞與分散式帳簿技術結合,促進互通性並避免市場分裂。 電子投票的概念驗證將會在沙盒環境中測試SWIFT的應用程式代管(host)能力。 確認使用ISO 20022作為應用程式介面標準化之基礎,透過應用程式介面將儲存於分散式帳簿節點間資料分享給分類帳。   期望透過區塊鏈技術之應用,以金融創新的解決方案改善傳統上股東會礙於書面投票或代理流程繁瑣之不便利,將區塊鏈技術與ISO標準相互結合,建立系統化之創新電子投票解決方案,促進市場發行者與參與者密切合作。   我國金融監督管理委員會為強化股東權益之保護,落實電子投票制度,於 106年1月18日發布金管證交字第1060000381號函釋:「依據公司法第一百七十七條之一第一項規定,上市(櫃)公司召開股東會時,應將電子方式列為表決權行使管道之一」;又隨著智慧型手機與行動網路普及,電子投票可能成為未來股東會股東表決權行使趨勢之一,此次SWIFT與業界共同提出之區塊鏈電子投票發展或可作為未來我國電子投票實務運作之參考。

為減少排放二氧化碳 瑞士將課徵取暖用油稅

  為達到二○一○年二氧化碳排放量比一九九○年降低百分之十的目標,瑞士政府已決定明年開徵取暖用油稅,及提高汽油與柴油進口稅。瑞士環境部長勒恩伯格警告,假如溫室氣體排放程度不能降低,可能會課徵更多的燃料捐。    瑞士的「二氧化碳法(CO2 LAW)」奠定了永續能源政策及氣候變遷政策,規定到二○一○年,石化燃料排放的二氧化碳必須比一九九○年水準低百分之十,超過京都議定書的百分之八。瑞士當局已決定,二○○六年起,每公升取暖用油將課徵稅收九分瑞士法郎,汽油與柴油進口稅每公升增加一點六分。    在去年十月,瑞士政府提出四種不同課稅建議,經過諮商,多數贊同取暖用油稅,因為百分之六十的二氧化碳排放來自取暖用油。勒恩伯格表示,這項稅收是公平的,已採取減少二氧化碳排放措施的個人與公司受到的影響較小,「污染者付稅」將可鼓勵採取有利於環境的措施。    瑞士政府並認為,其他溫室氣體排放也會因此降低,健康衛生的開支也因此下降。

歐洲專利局發布人工智慧與機器學習專利審查指南正式生效

  歐洲專利局(European Patent Office, 下稱EPO)於2018年11月1日發佈新版專利審查指南已正式生效。此次新版的焦點為Part G, Chapter II, 3.3.1關於人工智慧(Artificial Intelligence, AI)與機器學習(Machine Learning, ML)的可專利性審查細則。   在新版審查指南Part G, Chapter II, 3.3中指出數學方法本身為法定不予專利事項,然而人工智慧和機器學習是利用運算模型和演算法來進行分類、聚類、迴歸、降維等發明,例如:神經網路、遺傳演算法、支援向量機(Support Vector Machines, SVM)、K-Means演算法、核迴歸和判別分析,不論它們是否能夠藉由數據加以訓練,此類運算模型和演算法本身,因具有抽象的數學性質而不具專利適格性。   其中,EPO亦針對人工智慧和機器學習相關應用舉例下列特殊情形,說明可否具備發明技術特徵:   (一)可能具技術性 在心臟監測儀器運用神經網路辨別異常心跳,此種技術為具有技術貢獻。 基於低階特徵(例如:影像邊緣、像素數值)的數位影像、影片、音頻或語言訊號分類,屬於分類演算法的技術應用。   (二)可能不具技術性 根據文字內容進行分類,本身不具技術目的,而僅是語言學的目的(T 1358/09) 對抽象數據或電信網路數據紀錄進行分類,但未說明所產生分類的技術用途,亦被認定本身不具技術目的,即使該分類演算法的數據價值高(例如:穩健性)(T 1784/06)。   在新版審查指南中亦指出,當分類方法用於技術目的,其產生之訓練集(training set)和訓練分類器(training the classifier)的步驟,則能被視為發明的技術特徵。   近年來,人工智慧技術的應用分佈在我們的生活中,無論是自駕車、新藥開發、語音辨識、醫療診斷等,隨著人工智慧和機器學習技術快速發展,新版的審查指南將為此技術訂定可專利性標準,EPO未來要如何評判人工智慧和機器學習相關技術,將可透過申請案之審查結果持續進行關注。 「本文同步刊登於TIPS網站(https://www.tips.org.tw )」

TOP