美國第七巡迴上訴法院於Wallace v. IBM, Red Hat, and Novell 一案認定GPL或自由軟體授權模式不違反聯邦反托拉斯法

  美國第七巡迴上訴法院( U.S. Court of Appeals (7thCir) )最近就 Wallace v. IBM, Red Hat, and Novell 一案做出判決,本案爭執重點在於 GPL 授權條款與反托拉斯法之間的關係,美國第七巡迴上訴法院認為 GPL 授權條款並不違反反拖拉斯法,法院也同時明確表示,一般而言自由軟體無須擔心會違反反托拉斯法。


  本案上訴人
Daniel Wallace 係程式設計師,其欲販售由 BSD Berkeley Software Distribution )所開發出來的競爭軟體給各級學校。 BSD Linux 的衍生版本,而 Linux 作業系統則是屬於自由軟體的一種,想要使用 Linux 的人就必須遵守 GPL 授權條款。依 GPL 授權條款規定,不論 Linux Linux 之衍生著作均不得收取授權費用,上訴人因此指控 IBM Red Hat Novell 與自由軟體協會涉嫌共謀將軟體價格設定在零,涉嫌以掠奪性定價( predatory pricing claim )方式削減作業系統市場之競爭,已違反反托拉斯法。


  法院認為,本案並無法主張掠奪性定價,蓋被上訴人
IBM Red Hat Novell 並無法因此而取得獨佔價格,其授權價格之所以為零乃是遵照 GPL 授權條款的結果,且消費者並未因此受到損害。其次,法院也指出,著作權法通常對他人之改作權加以限制,其目的是為了收取授權金,不過著作權法人亦可用以確保自由軟體維持零授權金,因此任何嘗試想要販售自由軟體之衍生著作者,將會違反著作權法,即令改作人不同意接受 GPL 授權條款的約束。

本文為「經濟部產業技術司科技專案成果」

相關連結
※ 美國第七巡迴上訴法院於Wallace v. IBM, Red Hat, and Novell 一案認定GPL或自由軟體授權模式不違反聯邦反托拉斯法, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=605&no=57&tp=1 (最後瀏覽日:2025/12/08)
引註此篇文章
你可能還會想看
美國為遏止專利濫訟通過創新法案(The Innovation Act of 2013)

  美國眾議院今年(2013)12月5日通過創新法案(The Innovation Act of 2013,H.R. 3309),主要目的在於填補美國發明法(Leahy-Smith America Invents Act,AIA)對於遏止專利濫訟之不足。創新法案中達成立法目標之核心手段主要有以下五個方向。 1.限縮提訴要件,要求提起專利訴訟,必須說明遭侵權之商品以及遭侵權之情形,特別是針對專利侵權之因果關係的說明,以不實施專利主體(Non-practice Patents Entity,NPE)不生產製造專利產品之特性遏止其專利濫訟。 2.訴訟費用的轉移,將相關成本轉移至敗訴方,並加諸合理之賠償費用。直接以訴訟成本之轉嫁來影響訴訟意願,然而此舉是否造成真正之專利所有者保護自身專利之障礙仍須觀察個案。 3.延遲證據開示,避免證據開示過早影響判決之結果。 4.要求專利所有者持續針對所有之專利進行資訊更新,使專利所有權透明化,以揭露NPE藉由空殼公司進行濫訟之行為。 5.創新法案另試圖使專利產品之實際製造商代替消費者面對專利侵權時相關產品之訴訟。   而眾議院通過創新法案的同時,參議院也有相類似的平行立法提案,稱為專利透明化與改進法案(The Patent Transparency and Improvement Act of 2013,S. 1720)。比較參眾兩院之法案版本後,可以發現兩者立法目的以及採取的手段均類似,主要都集中在於資訊的透明化以及訴訟成本的轉嫁,試圖藉由除去專利訴訟有利可圖的情形遏止專利濫訟的現象,但是參議院版本之法案是否真的能夠達到遏止專利濫訟之情形受到各界更多的爭議。

美國總統發布行政命令,促進資料中心基礎建設之發展

2025年7月23日,川普總統簽署行政命令,加速資料中心基礎建設(data center infrastructure)之發展。適用該命令之資料中心,需新增超過100百萬瓦(MW)電力負載,並新增瓦數專用於人工智慧推論、訓練、模擬或產生合成資料。 行政命令內容主要包含以下事項: 1. 政府將為合格資料中心基礎建設提供財政支持,如貸款、貸款擔保、補助金(grants)、稅收優惠(tax incentives)或承購協議(offtake agreements)。本行政命令所稱之合格資料中心基礎建設,其本體或相關設施需符合以下條件之一: (1) 業者承諾投資超過五億美元,五億以上之具體門檻以美國商務部長認定為準。 (2) 新增超過100百萬瓦(MW)之電力負載。 (3) 有助於維護國家安全。 (4) 經美國國防部、內政部、商務部或能源部之部長指定。 2. 撤銷拜登總統發布之14141號行政命令「推進美國在人工智慧基礎建設領域的領導地位」。該命令原要求在聯邦土地建設人工智慧資料中心者須提供關於多元與氣候議題之說明。 3. 指示政府機關簡化合格資料中心基礎建設的環境審查和許可。 (1) 相關政府機關應向環境品質委員會(Council on Environmental Quality)確定依《國家環境政策法》(National Environmental Policy Act),可以加速合格資料中心基礎建設建置的環境審查豁免措施。 (2) 環境品質委員會應考量資料中心基礎建設對環境產生之影響,制定新的環境審查豁免措施。 4. 對符合FAST-41計畫(FAST-41 program)要求之資料中心基礎建設,加速其取得建設相關許可之過程。 該計畫名稱及內涵緣起於《修復美國地面運輸法》第41章節(Title 41 of the Fixing America's Surface Transportation Act)。一般而言,參與該計畫之建設,需滿足指定投資額、受指定組織贊助、於指定地點興建,或合乎特定環境法規等要求。合乎計畫要求之建設,可與主管機關協調取得建設相關許可之時間,並由聯邦許可改善指導委員會(The Federal Permitting Improvement Steering Council)下屬團隊協助進行專案管理。 5. 環境保護局(Environmental Protection Agency)局長應依法定權限,加速確認可供合格資料中心基礎建設使用的棕地(brownfields)。 依美國環境保護局定義,棕地是指含有危險物質、污染物的土地,因開發利用困難,需進行養護、排除開發障礙,或以其他方式開發。 6. 內政部、能源部應依法確定適合用於建設資料中心的土地,適當授權合格資料中心基礎建設業者在聯邦土地上進行建造。 參酌該行政命令意指,美國政府期許減少環境政策對人工智慧資料中心及相關設施的影響,透過快速推動建設進程,確保美國經濟繁榮,以及在科學、數位經濟領域的領導地位。

Web2.0 網站平台管理之法制議題研析-以網路實名制與揭露使用者身份

美國著作權局發布AI著作權報告第三部分:生成式AI訓練-AI訓練是否構成合理使用?

美國著作權局發布AI著作權報告第三部分:生成式AI訓練-AI訓練是否構成合理使用? 資訊工業策進會科技法律研究所 2025年06月04日 美國著作權局於2025年5月發布著作權與AI第三部分報告之預出版本 (Copyright and Artificial Intelligence Part 3: Generative AI Training pre-publication version)[1],該報告重點為生成式AI訓練資料與著作權之關係,彙整各方意見並分析現行法制之挑戰及修改方向,目前發布之版本為預出版本,該報告說明將於近期發布最終確認版,預期其結論與實質內容並不會有修改。 壹、事件摘要 美國著作權局自2023年起即開始對AI所引發之著作權法律及政策問題進行研究,同年8月著作權局發布著作權及AI諮詢通知(Comments on Artificial Intelligence Notice of Inquiry, NOI),徵集各界對AI著作權議題之意見,著作權局亦針對相關議題舉辦多場公聽會及研討會協助意見之蒐集[2]。NOI發布後蒐集到之意見經著作權局整理分析,於2024年7月起發布AI著作權報告,第一部分為數位仿造,第二部分於2025年1月發布為就AI作品之著作可保護性之分析,而同年5月所發布之第三部分則聚焦於生成式AI之訓練。 生成式AI於訓練過程可能大量使用受著作權保護之作品,此份報告針對訓練過程可能涉及之著作權問題進行分析,主要說明AI模型訓練過程中使用受著作權保護作品是否可構成合理使用。 貳、重點說明 一、生成式AI模型訓練及模型權重對重製權之侵害 使用受著作權保護作品進行AI模型訓練涉及著作權中之重製,除非開發者能提出授權或其他合理抗辯如合理使用等,否則可能對一項或多項著作權利構成初步侵權(Prima Facie Infringement)。AI開發者於模型訓練階段會進行多次作品複製,包含下載作品、於儲存媒介間轉換、將作品進行格式化或製作副本等[3],模型訓練過程中暫時複製之作品亦有可能因其存在於時間足夠而構成重製權之侵害[4]。 在特定情形下,模型權重(model weights)[5]之複製亦可能構成重製權之侵害。訓練過程可能使模型權重包含著作權作品,而若第三方複製了包含著作權作品之模型權重,即便其未參與模型之訓練,亦可能構成初步侵權[6]。若模型能在未經外部輸入之情形下產出與訓練範例相似之內容時,表示此範例必以某種形式存在於模型權重中,故此模型權重之複製極有可能侵犯著作重製權[7]。換言之,不僅開發者有可能因模型權重之複製侵害著作權人之權利,部署、使用等第三方若複製模型權重亦有可能構成對重製權之侵害。 著作權局指出,模型權重究竟是否會構成重製權或甚至衍生作品之侵權,須判斷該模型權重是否保留與作品受權利保護部分實質相似之內容,僅有在實質相似之情形下,模型權重之複製才可能構成侵權[8]。 二、合理使用 對著作權作品之合理使用可做為作品重製權的抗辯,著作權局於報告中就不同因素分析AI使用著作權作品進行訓練是否得主張合理使用。AI於訓練過程中會有多次複製行為,惟在判斷AI模型訓練是否為對作品之合理使用,仍須視整體使用情境進行判斷[9]。 (1) 作品轉化性須視模型目的及佈署判斷 報告中分析作品之轉化性(transformativeness)[10],AI訓練使用作品是否具有轉化性並非絕對,而是依據模型最終之功能及佈署有程度上之區別,須依個案判斷。若模型之訓練目的為用於研究或封閉系統,則該模型具高轉化性;若其目的是生成與訓練用作品實質相似之結果時,不具轉化性。多數模型之轉化程度會落在前述兩極端之中間,如模型使用特定類型之作品進行訓練,用以生成使用目的與原作相同之內容時,即便其生成內容未有實質相似,頂多僅為有限度之轉化(modestly transformative)[11]。AI開發商得於其系統設置防護措施,限制模型複製受著作權保護作品之節錄內容,使生成內容之目的與原作品不同,此措施能使模型訓練更具轉化性[12]。 有論者認為,使用受著作權保護作品進行AI模型訓練並非出於表達目的,且近似人類學習,因此實質上應是具有轉化性的,著作權局否定了前述兩種說法。報告中說明,語言模型於訓練時所吸收的內容包含文句、段落及文件之排列選擇,並非單純僅吸收其單字含意,且所生成之模型是被用作創造表達性內容,故不得謂AI模型為非表達性目的[13]。其次,針對人類學習觀點,報告首先闡明,學生基於學習目的亦不得以合理使用為由複製整本著作,因此人類學習並不得直接作為合理使用之抗辯。生成式AI之訓練能迅速分析並生成完美之作品,此非如同人類經學習後會產出具個別人格特質之結果,故著作權局不同意AI模型之訓練為與人類學習相同具有轉化性之論點[14]。 (2) 受著作權保護作品之表達性 AI訓練所使用之受著作權保護作品若具較高創作或表達性,如小說、電影等,其著作權比其他作品如電腦編碼等功能性作品更接近著作權之保護核心。而AI模型訓練來源多元,因此判斷上仍須視個案模型及作品而定。 (3) 使用作品之合理比例 AI模型訓練需大量複製受著作權保護作品,於判斷其複製比例是否合理時,係判斷模型訓練所複製之部分對於受著作權保護作品之數量及重要性使否合理[15]。作品使用之合理性,須考量重要性以及數量,若模型僅使用小部分作品做訓練,但該部分為著作權作品之核心部分,此使用並不一定合理。 在使用完整作品層面,生成式AI較一般搜尋引擎更不具合理性,生成式AI所提供之資訊並非僅限於其訓練資料庫中所複製作品資料。然而,許多生成式AI之訓練方式必須使用完整作品進行訓練,因此,著作權局指出,雖開發者使用完整作品進行訓練與合理使用相悖,但若其訓練具有轉化性目的(transformative purpose),並且有必要透過大量作品之訓練以提升模型效能時,則使用整部作品進行訓練可能被認為合理[16]。換言之,使用完整作品進行訓練合理與否須連同其使用必要性及訓練目的一併考量。 (4) 影響原作品之潛在市場或價值 報告中點出三項生成式AI訓練可能造成的市場危害。 A 銷售損失(lose sale):權利人因潛在消費者選擇AI複製創作取代原作,而失去收入。 B 市場稀釋 (market dilution):AI生成內容之速度以及規模對訓練資料中同類作品之市場造成稀釋風險,原作者將更難銷售其作品亦將使消費者更難找到真人創作之作品[17]。AI所生成風格相似之作品亦會導致市場稀釋,風格非為著作權所保障之方為,惟若AI生成與作品風格相似之內容,即便未有實質相似,但消費者可能因此難以分辨AI創作與真人作者,將使AI作品與原作者之作品於市場上直接競爭而影響原市場[18]。 C 喪失授權收入機會 (lost licensing opportunities):權利人本可就其作品於市場上有授權收入之機會,但因AI未經授權使用作品進行訓練而喪失該部分收入[19]。 三、 授權使用 對於AI自願授權之情形於近年越來越普遍,報告亦肯認自願授權之可行性,雖自願授權可行,且已有開發商開始實施,惟對於完全滿足AI產業之需求仍存有疑義[20]。該報告認為,即便現階段自願性授權仍為發展中之制度,但該制度確實能避免使用著作權作品之不確定性。著作權局認為應讓自願性授權制度於授權市場於無政府干預情形下繼續發展,若未來於特定類型作品中出現失靈情形時,再考慮進行擴大集體授權等干預措施[21]。 參、事件評析 AI訓練使用著作權保護作品是否可以合理使用作為抗辯為近年AI發展下著作權高度討論問題之一。目前美國各地法院中有40多件相關案件正在進行審理,然就此報告之結論觀之,其並未對AI訓練是否可作為合理使用給予統一解答,合理使用與否仍須視個案而定。如同報告結論所提及,AI訓練過程中,使用受著作權保護作品可能具有轉化性,但是否足以構成合理使用,仍須視其所使用之作品、來源以及目的等個案因素而定[22]。AI訓練於著作權仍存在一定程度之不確定性。 值得注意的是,雖報告並未明示AI訓練使否為合理使用著作權作品,惟其立場似乎更偏向有利於著作權利人。例如報告中於轉化性認定具有灰色地帶,開發商是否能主張合理使用仍需於後續由法院個案認定。此外,報告中提及市場稀釋理論,目前尚未有法院採用,對合理使用之認定較為嚴格,即使未有實質相似之生成內容亦有可能因影響市場競爭被視為非合理使用,可見該理論對著作權利人之權利保障。 同時著作權局亦正向看待產業界透過自願性授權進行作品訓練之方法,雖該制度於AI訓練上尚未為一完善制度,但確實地授權制度能同時促進產業發展並保護著作權[23]。目前實務上亦是以此種作法解決合理使用之困境,但授權制度仍有待市場持續發展完善制度以確保能符合AI訓練之需求。 美國著作權局之報告雖對AI使用著作權保護作品進行訓練進行分析及說明,惟其結論仍是認為判斷上需依照個案分析。目前國際上尚未有對AI合理使用之實際定論,自願性授權仍為產業界所使用之方法。我國著作權法亦未對AI訓練之合理使用有說明,國際上將會如何發展仍有待觀察。 資策會科法所創智中心致力於著作權相關科技法律研究,本中心將持續關注相關議題並更新動態。 本文為資策會科法所創智中心完成之著作,非經同意或授權,不得為轉載、公開播送、公開傳輸、改作或重製等利用行為。 [1]U.S. Copyright Office Copyright and Artificial Intelligence, Part 3: Generative AI Training pre-publication version, https://www.copyright.gov/ai/Copyright-and-Artificial-Intelligence-Part-3-Generative-AI-Training-Report-Pre-Publication-Version.pdf [2]U.S. Copyright Office, Copyright Office Issues Notice of Inquiry on Copyright and Artificial Intelligence, https://www.copyright.gov/newsnet/2023/1017.html (last viewed: 2025/05/19) [3]supra note 1, at 26. [4]Id. at 27. [5]AI模型之建立仰賴神經網,主要功能為將輸入資料轉換為輸出資料。神經網路之運作方式係透過大量於訓練過程中產生之參數進行運案,而該些參數即為「權重」(weights)。 [6]Id. at 28. [7]Id. [8]Id. at 30. [9]Id. at 36-37. [10]轉化性係指新作品加入新元素,具有與原作不同目的或性質,且以新表達、意義或訊息改造原作。並且新作品於市場上較不會取代原作。 [11]Id. at 46. [12]Id. [13]Id. at 47. [14]Id. at 48. [15]Id. at 54. [16]Id. at 60. [17]Id. at 65. [18]Id. at 65-66. [19]Id. at 66-67. [20]Id. at 85. [21]Id. at 106. [22]Id. at 107. [23]Id. 本文同步刊登於TIPS網站(https://www.tips.org.tw)

TOP