2013年6月13日美國最高法院(the Supreme Court of the United States)就備受矚目之Association for Molecular Pathology v. Myriad Genetics, Inc.一案做出判決,認定如乳癌易感基因BRCA1、BRCA2等經單離(isolated)的人類DNA片段不具美國專利法第101條(35 U.S.C. §101)所規定之專利標的適格性。
美國最高法院指出,雖然專利權人發現了BRCA1與BRCA2基因的位置與序列,但是其並未創造或改變BRCA1與BRCA2基因上的任何遺傳資訊,亦並未創造或改變該DNA片段的基因結構,所以即使其是發現了一個重要而有用的基因,但僅是將其從周遭其他基因材料中分離出來,並非為一項發明行為。亦即是說,突破性、創新或卓越的發現並不必然符合美國專利法第101條之要件要求。
不過,美國最高法院認為,cDNA片段可以具備專利標的適格性,因為其為從mRNA所創造出來、僅具備外顯子(exons-only)的分子,而非自然發生之自然產物。然而美國最高法院對於cDNA是否符合其他可專利要件之要求並不表示意見。
美國最高法院亦強調,本案判決並未涉及任何方法發明,亦未就將有關BRCA1與BRCA2基因之知識予以應用的發明做出判斷,且未判斷自然發生之核苷酸順序經改變的DNA片段是否具備專利標的適格性的問題。
本文為「經濟部產業技術司科技專案成果」
.Pindent{text-indent: 2em;} .Noindent{margin-left: 2em;} .NoPindent{text-indent: 2em; margin-left: 2em;} .No2indent{margin-left: 3em;} .No2Pindent{text-indent: 2em; margin-left: 3em} .No3indent{margin-left: 4em;} .No3Pindent{text-indent: 2em; margin-left: 4em} 美國前任總統拜登於2022年底簽署《FDA現代化法2.0》(FDA Modernization Act 2.0, FDAMA 2.0),修改FDA自1938年以來新藥必須實施動物試驗之要求,將進入人體臨床試驗之前階段試驗改稱為「非臨床試驗(nonclinical test)」並許可採取非動物實驗方法,為美國在藥物安全監管方面的重大改變。 在FDAMA 2.0通過後,FDA仍未啟動修改監管法規以符合該法,為了確保改革能加速進行,2024年2月6日美國兩黨參議員合作提出《FDA現代化法案3.0》(FDAMA 3.0) 草案並於同年12月12日參議院無異議通過,惟眾議院在第118屆國會結束前並未討論該案,參議員於2025年2月第119屆國會重新提出該法案。 FDAMA 3.0重點包括: 1. 一般規定:FDA應於1年內,建立針對藥品的非臨床測試方法資格認定流程(Nonclinical Testing Methods Qualification Process);個人可申請特定用途的非臨床測試方法資格認定。 2. 符合資格之非臨床測試方法:非臨床測試方法必須可替代或減少動物測試;且提高非臨床測試對安全性和有效性的預測性,或縮短藥物(含生物製品)的開發時間。 3. 符合資格認定之應用:獲資格認定之非臨床測試方法,FDA應加速相關藥品申請(包括變更申請)的審核流程;允許申請人於藥品申請中引用相關數據與資訊。 4. 本法生效日起兩年內應每年向國會報告流程運行情形,包括已認定的方法類型、申請數量、審查天數、批准數量,以及該流程減少的動物數量估算等。 目前雖然其他國家尚未有類似立法,但歐美均投入大量研發資源減少動物實驗,且FDA亦於近日提出《減少臨床前安全試驗使用動物實驗之路線圖》,後續應密切關注本法案是否通過及相關產業影響。
世界衛生組織公布「人工智慧於健康領域之倫理與治理」指引世界衛生組織(World Health Organization, WHO)於2021年6月底公布「人工智慧於健康領域之倫理與治理」(Ethics and governance of artificial intelligence for health)指引。目前人工智慧於在改善診斷、治療、健康研究、藥物開發及公共衛生等健康領域皆有廣泛之應用與前景,而該指引首先指出人工智慧應用於健康領域中最相關之法律與政策外,並強調相關應用皆須以「倫理」及「人權」作為相關技術設計、部署與使用之核心,最後則提出人工智慧應用於健康領域之六大關鍵原則: 一、保護人類自主性(autonomy):本指引認為人類仍應該掌有關於醫療保健系統之所有決定權,而人工智慧只是輔助功能,無論是醫療服務提供者或患者皆應在知情之狀態下作決定或同意。 二、促進人類福祉、安全與公共利益:人工智慧不應該傷害人類,因此須滿足相關之事前監管要求,同時確保其安全性、準確性及有效性,且其不會對患者或特定群體造成不利影響。 三、確保透明度、可解釋性與可理解性(intelligibility):開發人員、用戶及監管機構應可理解人工智慧所作出之決定,故須透過記錄與資訊揭露提高其透明度。 四、確立責任歸屬(responsibility)與問責制(accountability):人工智慧在醫學中所涉及之內部責任歸屬相當複雜,關於製造商、臨床醫師及病患間相關之問責機制之設計將會成為各國之挑戰,故須存在有效之機制來確保問責,也應避免責任分散之問題產生。 五、確保包容性(inclusiveness)與衡平性(equity):應鼓勵應用於健康領域之人工智慧能被廣泛且適當地使用,無論年齡、性別、收入及其他特徵而有差別待遇,且應避免偏見之產生。 六、促進具適應性(responsive)及可持續性之人工智慧:人工智慧應符合設計者、開發者及用戶之需求與期待,且能充分具適應性之回應且符合使用環境中之要求。
美國競爭法主管機關發布反托拉斯執法與智慧財產權報告美國司法部(Department of Justice, DOJ)及聯邦貿易委員會(Federal Trade Commission, FTC)於今(2007)年4月中旬,公布了眾所矚目的「反托拉斯執法與智慧財產權報告」(Antitrust Enforcement and Intellectual Property Rights, Antitrust-IP Report)。本報告綜整歸納DOJ與FTC於2002年所舉行的一系列名為「知識經濟時代之競爭與智慧財產權法制政策」(Competition and Intellectual Property Law and Policy in the Knowledge-Based Economy)公聽會重點,以及來自於不同利益團體與產業代表之看法。 DOJ與FTC於1995年曾公布「智慧財產授權之反托拉斯指導原則」(Antitrust Guidelines for the Licensing of Intellectual Property,以下簡稱1995年指導原則),基本上,甫公布的「反托拉斯執法與智慧財產權報告」的內容,重申DOJ與FTC過去依1995年指導原則的執法實務與政策,報告也特別針對幾種經常引起疑義的智慧財產運用態樣,諸如搭售(tying):專屬交易(exclusive dealing)、特殊授權條款、專利聯盟(patent pools)、交互授權(cross-licenses),肯認其亦有加強競爭並有利於消費者的效果,故DOJ與FTC將會依合理原則(rule of reason)評估個別契約的合法性,而不會逕認其係本質違法(per se unlawful)。所謂合理原則,係指由法院及競爭法主管機關,就特定協議之有利於競爭效果與反競爭效果間進行權衡,以判斷其對整體市場競爭與消費者福祉所產生之影響。 此外,DOJ與FTC也針對個別的行為,如單方拒絕授權(unilateral Refusals to License)、標準制定(standard setting)、交互授權(cross-licenses)、專利聯盟(patent pools)、使專利期間延長於法定保護期間之外(extending patent rights beyond the statutory term)等,於報告中揭示其所持的一般管理政策。