澳洲於去(2012)年通過「智慧財產權法修正案」 (Intellectual Property Laws Amendment Act 2012),主要修正條文已於今(2013)年4月15日起正式施行。此次的修法大幅度提高了可專利性的審查標準,為澳洲專利制度帶來重大變革。新法適用於2013年4月15日以後提出實體審查申請之專利申請案,在新法施行後專利申請案將受到更嚴格的審查。
重要修正如下:
‧新法去除了舊專利法關於先前技術的地理區域範圍的限制。將其他各國的先前技術也一併納入考量,規範較舊法更為國際化。
‧新法只要求所屬技術領域具有通常知識者「可能了解」且「技術相關」即可,放寬了用來判斷進步性根據之先前技術標準,使得符合進步性的要求較舊法為提高。
‧新專利法要求專利說明書需揭露系爭發明特定的(specific)、主要的(substantial)、可信的(credible)用途,以滿足實用性的要件。此外,專利說明書上之描述必須清楚且完整,使所屬技術領域中具有通常知識者得以了解文件內容並可據以實施,
‧新法對於可專利性的認定改採「概然性權衡」(balance of probabilities)標準,亦即若專利審查員認為,未來在進行專利有效性審理,法院有超過50%的機率認定系爭發明不具可專利性時,審查委員即得駁回該申請案。
‧增加了修正專利說明書時禁止加入新事項的限制規定,對於專利的申請益趨嚴格。
此次修法是澳洲專利制度近20年以來的最大變革,經過此次修正可預見未來申請取得澳洲專利的難度將大幅提升。更值得注意的是,由此次修正,可發現澳洲專利制度已向大多數國家的規範靠攏,使得澳洲專利法與國際間其他國家如美國、歐盟等國家的規定更為協調一致。
本文為「經濟部產業技術司科技專案成果」
瑞士聯邦委員會(The Swiss Federal Council)於2022年11月23日發布氣候揭露規則(L'ordonnance relative au rapport sur les questions climatiques),旨在補充《瑞士債法典》(Code des Obligations)企業非財務資訊揭露義務之標準,要求瑞士大型企業呈現明確、可供比較的氣候資訊,並於2024年1月1日起生效。 依照《瑞士債法典》第32章第6節「非財務事項之透明度(Transparency on Non-Financial Matters)」規定,擁有500位以上員工,且資產負債表總額為2000萬瑞士法郎以上或營業額超過4000萬瑞士法郎之上市公司、銀行和保險公司(下稱大型企業)每年應揭露非財務資訊。氣候揭露規則就此進一步補充該章節的內容,要求大型企業依照國際公認標準揭露氣候資訊,要點如下: (1)明定包括氣候對大型企業造成的影響與企業活動對氣候造成的影響在內的資訊,皆應於大型企業的非財務資訊報告中公布。 (2)將氣候相關財務揭露工作小組(Task Force on Climate-related Financial Disclosure, TCFD)公布之「TCFD建議書(Recommendations of the Task Force on Climate-related Financial Disclosures)」與附件「TCFD建議書之實施(Implementing the Recommendations of the Task Force on Climate-related Financial Disclosures)」納為瑞士大型企業氣候揭露標準,包括治理、戰略、風險管理及關鍵指標與目標四項主題,並應留意建議書「適用所有部門(all-sectors)」與「個別部門(certain sectors)」之指引。 (3)如未依規定揭露者,則應說明其遵循氣候揭露義務的其他方式,或說明無須遵循的正當理由。
英國國家統計局政府資料品質中心發布《政府資料品質框架》英國國家統計局(Office for National Statistics)轄下之政府資料品質中心(Government Data Quality Hub)為實踐英國數位、文化、媒體暨體育部(Department for Digital, Culture, Media & Sport)發布之《國家資料戰略》(National Data Strategy),於2020年12月3日釋出《政府資料品質框架》(The Government Data Quality Framework),以達成國家資料戰略中「資料基礎(Data Foundation)」之核心目標。該框架提出「資料品質原則」(Data quality principles),旨在解決目前政府資料品質低落的問題。該原則包含以下五點: 一、確保資料品質:機關內部應建立有效的資料治理機制,例如培訓員工具備管理資料的能力、持續改進資料品質等。 二、了解使用者需求:機關應將使用者對資料品質的需求視為優先處理事項。 三、評估資料於資料生命週期各階段之品質:機關應密切關注資料於生命週期各階段之品質,並與使用者及利益關係人交換意見。 四、持續溝通資料品質:機關應持續與使用者交流資料品質現況,提供使用者有效的文件及中繼資料(metadata)。 五、了解造成資料品質低落的主因:分析造成資料品質低落的根本原因,從源頭徹底解決資料品質問題。 英國國家統計局政府資料品質中心希望藉由本框架揭示的資料品質原則,提升政府機關人員主動辨別及解決資料品質問題的能力,以改善政府資料品質、為人民帶來更高品質的資料,釋放資料價值並促進社會經濟發展。
數位內容通路商收購相關支援技術數位內容於廣播應用上銷售與管理解決方案的領導廠商拜斯法爾 (Pathfire, Inc)於日前收購了相關的支援技術 Digital Media Gateway (DMG) Server Connect for Programming,並將此一技術應用於十二個廣播站上。 在技術整合之後, 拜斯法爾的程式聯結伺服器,將得以直接將 DMG伺服器之數位內容傳輸至廣播站的空中播送伺服器,並保留原先的數位格式。 隨著廣播電視的數位化,數位內容、廣播電視與相關數位技術的整合,應是未來發展的趨勢。相關技術的整合與相關企業的轉投資與併購,應會持續增加。政府在擬定政策與相關法令之時,宜事先掌握相關趨勢,因勢利導,以達事半功倍之效。
美國國家標準暨技術研究院規劃建立「人工智慧風險管理框架」,並徵詢公眾對於該框架之意見美國國家標準暨技術研究院(National Institute of Standards and Technology, NIST)為管理人工智慧對於個人、組織以及社會所帶來之風險,於2021年7月29日提出將建立「人工智慧風險管理框架」(Artificial Intelligence Risk Management Framework, AI RMF)之規畫並徵詢公眾意見,截止日為9月15日,並預計於10月發布正式報告。 依照NIST說明,公眾所建議之人工智慧風險管理框架,可促進人工智慧之可信賴性,其中包含如何應對並解決人工智慧於設計、發展及使用過程中所遭遇之「精確度」(accuracy)、「可解釋性」(explainability)、「偏見」(bias)等議題。此外,上開管理框架預計為非強制性、供企業自願性使用於人工智慧設計、發展、使用、衡量及評估之人工智慧標準。 依現有公眾意見徵詢結果,其中DeepMind公司建議於人工智慧設計初期,必須預先構思整體系統之假設是否符合真正社會因果關係。舉例言之,當設計一套可預測民眾健保需求程度之系統時,如輸入參數僅考量民眾於醫療上的花費,將使僅有可負擔較高醫療費用之民眾被歸類為健保需求程度較高者,從而導致健保制度排擠經濟負擔程度較差之公民,故在設計系統時,應從預先設定之假設事實反面(counter-factual)思考並驗證是否會產生誤差或公平性之問題(例如預先思考並驗證「醫療費用支出較低之民眾是否即可被正確歸類為健保需求度低之民眾」)。惟進行上述驗證需要大量社會資料,因此DeepMind也建議NIST應建立相關機制,使這些社會資料可以被蒐集、使用。 此外,亦有民眾建議管理框架應有明確之衡量方法以及數值指標,以供工程界遵循。同時鑒於人工智慧發展極為快速,未來可能有不同於以往之人工智慧類型出現,故亦建議NIST應思考如何在「建構一套完整且詳細之人工智慧治理框架」與「保持人工智慧治理框架之彈性與靈活性」之間取得平衡。 最後,目前也有許多徵詢意見指出,許多人工智慧治理之目標會相互衝突。舉例言之,當NIST要求人工智慧系統應符合可解釋性,則人工智慧公司勢必需要經常抽取人工智慧系統中之「數據軌跡」(audit logs),惟數據軌跡可能被認為是使用者之個人資料,因此如何平衡或完善不同治理框架下之目標,為未來應持續關注之議題。