澳洲於去(2012)年通過「智慧財產權法修正案」 (Intellectual Property Laws Amendment Act 2012),主要修正條文已於今(2013)年4月15日起正式施行。此次的修法大幅度提高了可專利性的審查標準,為澳洲專利制度帶來重大變革。新法適用於2013年4月15日以後提出實體審查申請之專利申請案,在新法施行後專利申請案將受到更嚴格的審查。
重要修正如下:
‧新法去除了舊專利法關於先前技術的地理區域範圍的限制。將其他各國的先前技術也一併納入考量,規範較舊法更為國際化。
‧新法只要求所屬技術領域具有通常知識者「可能了解」且「技術相關」即可,放寬了用來判斷進步性根據之先前技術標準,使得符合進步性的要求較舊法為提高。
‧新專利法要求專利說明書需揭露系爭發明特定的(specific)、主要的(substantial)、可信的(credible)用途,以滿足實用性的要件。此外,專利說明書上之描述必須清楚且完整,使所屬技術領域中具有通常知識者得以了解文件內容並可據以實施,
‧新法對於可專利性的認定改採「概然性權衡」(balance of probabilities)標準,亦即若專利審查員認為,未來在進行專利有效性審理,法院有超過50%的機率認定系爭發明不具可專利性時,審查委員即得駁回該申請案。
‧增加了修正專利說明書時禁止加入新事項的限制規定,對於專利的申請益趨嚴格。
此次修法是澳洲專利制度近20年以來的最大變革,經過此次修正可預見未來申請取得澳洲專利的難度將大幅提升。更值得注意的是,由此次修正,可發現澳洲專利制度已向大多數國家的規範靠攏,使得澳洲專利法與國際間其他國家如美國、歐盟等國家的規定更為協調一致。
本文為「經濟部產業技術司科技專案成果」
日本「電子資訊技術產業協會」 (Japan Electronics and Information Technology Industries Association , JEITA) 、美國「家電協會」 (Consumer Electronics Association , CEA) 及歐洲「資訊通信技術產業協會」 (European Information & Communications Technology Industry Association,EICTA) 等家電業界團體,本月 13 日在布魯塞爾召開的國際會議上,聯名反對各國為對抗著作權侵害而採取的私人錄音補償金制度,其表示該制度在今日已經是個過時的制度。目前在日本沸沸揚揚的「 iPod 應否徵收補償金」議題,也受到了製造業一方的強烈反對。 所謂的「私人錄音補償金制度」,係指對 MD 、 DVD 及光碟等錄音、儲存設備,課徵其售價 1% ~ 3% ,以該筆金錢補償著作權人因錄音設備銷售而造成的潛在損失。憂心數位時代來臨可能造成盜版行為的日益猖獗,主要國家紛紛導入了私人錄音補償金制度;但隨著版權管理 (DRM) 技術的精進,已大幅增加違法複製的困難度,立論於錄音設備可能助長盜版的私人錄音補償金制度,所受到的質疑也愈來愈強烈。 日本文部省轄下的「文化審議會著作權小組」,針對 iPod 等播放設備應否徵收補償金,在製造商及消費者代表的反彈下,迄今仍無定論。在 13 日跨國製造業聯合聲明出現後,更強化了反對一方的聲浪。
美國CVAA義務豁免之案例介紹與分析 2030年數位羅盤:數位十年的歐洲之路由於新冠肺炎疫情爆發,反應了歐盟對非歐洲國家數位技術的依賴,歐盟為扭轉此局勢,於2021年3月9日提出「2030數位羅盤」(2030 Digital Compass)計畫,擬定至2030年歐洲成功實現數位轉型的願景、目標和途徑。 歐盟預計在2030年前將計畫中4個核心目標轉化為具體政策: (一)擁有數位知識之公民及數位專家: 1.具備基本數位知識之人口至少達到80%。 2.應有2000萬名以上的資訊通訊技術專家,且促使更多女性進入此產業。 (二)安全和永續發展的數位基礎設施: 1.所有歐洲家庭都應擁有Gigabit網路,且所有人口密集區都應被5G所覆蓋。 2.歐洲半導體的產量應占世界的20%。 3.歐盟應部署1萬個氣候中立的高度安全邊緣節點(edge node)。 4.於2025年前開發出歐洲第一台量子電腦。 (三)企業數位化轉型: 1.75%的歐洲企業應使用雲端運算服務,大數據和人工智慧。 2.超過90%的歐洲中小企業應達基本數位密集強度。 3.擴大創新規模並改善融資管道,使歐盟的獨角獸企業數量翻倍。 (四)公共數位化服務: 1.於線上提供所有主要的公共服務。 2.所有歐洲公民均能使用電子病歷。 3.80%的歐洲公民應使用電子身份證。 歐盟委員會將基於上述目標,期於2021年第3季前提出相關數位政策計畫,並於2021年底前與其他相關機構取得決定性進展。
合成資料(synthetic data)「合成資料」(synthetic data)的出現,是為了保護原始資料所可能帶有的隱私資料或機敏資料,或是因法規或現實之限制而無法取得或利用研究所需資料的情況下,透過統計學方法、深度學習、或自然語言處理等方式,讓電腦以「模擬」方式生成研究所需之「合成資料」並進行後續研究跟利用,透過這個方法,資料科學家可以在無侵犯隱私的疑慮下,使合成資料所訓練出來的分類模型(classifiers)不會比原始資料所訓練出來的分類模型差。 在合成資料的生成技術當中,最熱門的研究為運用「生成對抗網路」(Generative Adversarial Network, GAN)形成合成資料(亦有其他生成合成資料之方法),生成對抗網路透過兩組類神經網路「生成網路」(generator)與辨識網路(discriminator)對於不同真偽目標值之反覆交錯訓練之結果,使其中一組類神經網路可生成與原始資料極度近似但又不完全一樣之資料,也就是具高度複雜性與擬真性而可供研究運用之「合成資料」。 英國國防科技實驗室(Defense Science and Technology Laboratory, DSTL)於2020年8月12日發布「合成資料」技術報告,此技術報告為DSTL委託英國航太系統公司(BAE Systems)的應用智慧實驗室(Applied Intelligence Labs, AI Labs)執行「後勤科技調查」(Logistics Technology Investigations, LTI)計畫下「資料科學與分析」主題的工作項目之一,探討在隱私考量下(privacy-preserving)「合成資料」當今技術發展情形,並提供評估技術之標準與方法。 技術報告中指出,資料的種類多元且面向廣泛,包含數字、分類資訊、文字與地理空間資訊等,針對不同資料種類所適用之生成技術均有所不同,也因此對於以監督式學習、非監督式學習或是統計學方法生成之「合成資料」需要採取不同的質化或量化方式進行技術評估;報告指出,目前尚未有一種可通用不同種類資料的合成資料生成技術或技術評估方法,建議應配合研究資料種類選取合適的生成技術與評估方法。