新加坡針對閒置頻譜利用之政策管制架構提出公眾諮詢

  隨著行動通訊需求的提升,各國對無線頻譜資源需求若渴,除了極力釋出更多頻譜資源外,也針對既有頻譜的使用效率加以提升,以滿足頻譜的需求,無線廣播電視為了維護收訊品質,在各頻道之間保留相當大的空白區域,以避免訊號干擾;另一方面,無線廣播電視訊號在人口較少或是有線電視較發達的區域,訊號覆蓋的要求較低,產生許多無訊號的地帶,形成頻譜閒置的狀況。因此目前許多國家將提升頻譜效率的政策,運用在無線廣播電視所使用的頻段上,透過活用上述處於閒置的頻譜資源,滿足更多的無線通訊需求。

 

  目前動態頻譜接取技術就是這樣的一個創新,允許隨機的、免執照使用閒置頻譜,以提高頻譜效率。目前最主流的運用場域在無線廣播電視的頻道上,如前所述,這些頻譜的空白保留區域或是閒置未用的狀況,稱為電視閒置頻譜(TV White Space,TVWS)。TVWS可用以替代類似Wi-Fi功能的無線寬頻通訊,但能夠以更低的功耗與成本加以部署,並擁有更大的涵蓋範圍。TVWS技術亦可以無線連接多種智慧型的終端設備,並具有良好的成本效益,提供更多創新的應用和服務。

 

  新加坡資通訊發展管理局(The Infocomm Development Authority of Singapore,IDA)在2011年起結合相關業者開始進行概念實證運行,目的在驗證新加坡是否具有成功使用TVWS技術的可行性,並於2012年宣布成功。隨後,在IDA的支持下,集合資通訊業者成立「新加坡閒置頻譜先導團隊(Singapore White Space Pilot Group,SWSPG)」的產業協會,在新加坡各地展開了一系列的TVWS先導計畫。

 

  這些先導計畫包括新加坡國立大學的智慧能源控制與智慧電表、新加坡島嶼鄉村俱樂部的寬頻服務、樟宜機場與港口周邊地區提供公共的Wi-Fi熱點。這些先導計畫的作用也在於探詢TVWS技術如何補強既有的寬頻基礎設施,克服新加坡天然環境的限制,提供更多創新的消費和商業應用。這些先導計畫也展現出TVWS可以運用提供良好的多元化的商業服務,深受參與先導計畫的使用者肯定。總體而言,這些先導計畫證明TVWS技術可為新加坡的無線服務提供更多可用頻譜,從而提升了頻譜使用的整體效率。

 

  在這些先導計畫的成功基礎上,IDA認為為了促進TVWS的更大發展,應該展開TVWS設備與使用的的準則定義與確定管制上的的需求,一方面保護既有服務,一方面則必須避免各頻段可能產生的頻率干擾。IDA於2013年6月公布關於TVWS管制架構的公眾諮詢,藉以深入了解產業的需求,制訂完善的管制架構,確保TVWS的發展符合國際趨勢、新加坡的地理條件與市場環境的需求。IDA並希望能於2014年公布TVWS相關設備與服務的準則及管制架構。

相關連結
※ 新加坡針對閒置頻譜利用之政策管制架構提出公眾諮詢, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=6264&no=57&tp=1 (最後瀏覽日:2025/11/30)
引註此篇文章
你可能還會想看
通用人工智慧的透明揭露標準--歐盟通用人工智慧模型實踐準則「透明度 (Transparency)」章

通用人工智慧的透明揭露標準--歐盟通用人工智慧模型實踐準則「透明度 (Transparency)」章 資訊工業策進會科技法律研究所 2025年08月06日 歐盟人工智慧辦公室(The European AI Office,以下簡稱AIO) 於2025年7月10日提出《人工智慧法案》(AI Act, 以下簡稱AIA法案)關於通用型人工智慧實作的準則[1] (Code of Practice for General-Purpose AI Models,以下簡稱「GPAI實踐準則」),並於其中「透明度 (Transparency)」章節[2],針對歐盟AIA法案第53條第1項(a)、(b)款要求GPAI模型的提供者必須準備並提供給下游的系統整合者 (integrator) 或部署者 (deployer) 足夠的資訊的義務,提出模型文件(Model Documentation)標準與格式,協助GPAI模型提供者制定並更新。 壹、事件摘要 歐盟為確保GPAI模型提供者遵循其AI法案下的義務,並使AIO能夠評估選擇依賴本守則以展現其AI法案義務合規性的通用人工智慧模型提供者之合規情況,提出GPAI實踐準則。當GPAI模型提供者有意將其模型整合至其AI系統的提供者(以下稱「下游提供者」)及應向AIO提供相關資訊,其應依透明度章節要求措施(詳下述)提出符合內容、項目要求的模型文件,並予公開揭露且確保已記錄資訊的品質、安全性及完整性 (integrity)。 由於GPAI模型提供者在AI價值鏈 (AI value chain) 中具有特殊角色和責任,其所提供的模型可能構成一系列下游AI系統的基礎,這些系統通常由需要充分了解模型及其能力的下游提供者提供,以便將此類模型整合至其產品中並履行其AIA法案下的義務。而相關資訊的提供目的,同時也在於讓AIO及國家主管機關履行其AI法案職責,特別是高風險AI的評估。 AIO指出完整填寫與定期更新模型文件,是履行AIA法案第53條義務的關鍵步驟。GPAI模型提供者應建立適當的內部程序,確保資訊的準確性、時效性及安全性。模型文件所含資訊的相關變更,包括同一模型的更新版本,同時保留模型文件的先前版本,期間至模型投放市場後10年結束。 貳、重點說明 一、制定並更新模型文件(措施1.1) 透明度 (Transparency)章節提供模型文件的標準表格,做為GPAI實踐準則透明度章節的核心工具,協助GPAI模型提供者有系統性的整理並提供AIA法案所要求的各項資訊。表格設計考量了不同利害關係人的資訊需求,確保在保護商業機密的同時,滿足監管透明度的要求。 前揭記錄資訊依其應提供對象不同,各欄位已有標示區分該欄資訊係用於AI辦公室 (AIO)、國家主管機關 (NCAs) 或下游提供者 (DPs)者。適用於下游提供者的資訊,GPAI模型提供者應主動提供(公開揭露),其他則於被請求時始須提供(予AIO或NCAs)。 除基本的文件最後更新日期與版本資訊外,應提供的資訊分為八大項,內容應包括: (一)、一般資訊General information 1.模型提供者法律名稱(Legal name) 2.模型名稱(Model name):模型的唯一識別碼(例如 Llama 3.1-405B),包括模型集合的識別碼(如適用),以及模型文件涵蓋之相關模型公開版本的名稱清單。 3.模型真實性(Model authenticity):提供明確的資訊例如安全雜湊或URL端點,來幫助使用者確認這個模型的來源 (Provenance)、是否真實性未被更動 (Authenticity)。 4.首次發布日(Release date)與首次投放歐盟市場的日期(Union market release date)。 5.模型依賴(Model dependencies):若模型是對一個或多個先前投放市場的GPAI模型進行修改或微調的結果,須列出該等模型的名稱(及相關版本,如有多個版本投放市場)。 (二)、模型屬性(Model properties) 1.Model architecture 模型架構:模型架構的一般描述,例如轉換器架構 (transformer architecture)。 2.Design specifications of the model 模型設計規格:模型主要設計規格的一般描述,包括理由及所作假設。 3.輸出/入的模式與其最大值(maximum size):說明係文字、影像、音訊或視訊模式與其最大的輸出/入的大小。 4.模型總參數量(model size)與其範圍(Parameter range):提供模模型參數總數,記錄至少兩個有效數字,例如 7.3*10^10 參數,並勾選參數(大小)所在範圍的選項,例如:☐>1T。 (三)、發佈途徑與授權方式(Methods of distribution and licenses) 1.發佈途徑Distribution channels:列舉在歐盟市場上使用模型的採用法,包括API、軟體套裝或開源倉庫。 2.授權條款License:附上授權條款鏈結或在要求時提供副本;說明授權類型如: 開放授權、限制性授權、專有授權;列出尚有提供哪些相關資源(如訓練資料、程式碼)與其存取方式、使用授權。 (四)、模型的使用(Use) 1.可接受的使用政策Acceptable Use Policy:附上可接受使用政策連結或副本或註明無政策。 2.預期用途或限制用途Intended uses:例如生產力提升、翻譯、創意內容生成、資料分析、資料視覺化、程式設計協助、排程、客戶支援、各種自然語言任務等或限制及/或禁止的用途。 3.可整合AI系統之類型Type and nature of AI systems:例如可能包括自主系統、對話助理、決策支援系統、創意AI系統、預測系統、網路安全、監控或人機協作。 4.模型整合技術方式Technical means for integration:例如使用說明、基礎設施、工具)的一般描述。 5.所需軟硬體資源Required hardware與software:使用模型所需任何軟硬體(包括版本)的描述,若不適用則填入「NA」。 (五)、訓練過程(Training process) 1.訓練過程設計規格(Design specifications of the training process):訓練過程所涉主要步驟或階段的一般描述,包括訓練方法論及技術、主要設計選擇、所作假設及模型設計最佳化目標,以及不同參數的相關性(如適用)。例如:「模型在人類偏好資料集上進行10個輪次的後訓練,以使模型與人類價值觀一致,並使其在回應使用者提示時更有用」。 2.設計決策理由(Decision rationale):如何及為何在模型訓練中做出關鍵設計選擇的描述。 (六)、用於訓練、測試及驗證的資料資訊(Information on the data used for training, testing, and validation) 1.資料類型樣態Data type/modality:勾選樣態包括文字、影像、音訊、視訊或說明有其他模態。 2.資料來源Data provenance:勾選來源包括網路爬蟲、從第三方取得的私人非公開資料集、使用者資料、公開資料集、透過其他方式收集的資料、非公開合成(Synthetic )資料等。 3.資料取得與選取方式(How data was obtained):取得及選擇訓練、測試及驗證資料使用方法的描述,包括用於註釋資料的方法及資源,以及用於生成合成資料的模型及方法。從第三方取得的資料,如果權利取得方式未在訓練資料公開摘要中披露,應描述該方式。 4.資料點數量Number of data points:說明訓練、測試及驗證資料的大小(資料點數量),連同資料點單位的定義(例如代幣或文件、影像、視訊小時或幀)。 5.資料範疇與特性(Scope and characteristics):指訓練、測試及驗證資料範圍及主要特徵的一般描述,如領域(例如醫療保健、科學、法律等)、地理(例如全球、限於特定區域等)、語言、模式涵蓋範圍。 6.資料清理處理方法(Data curation methodologies):指將獲取的資料轉換為模型訓練、測試及驗證資料所涉及的資料處理一般描述,如清理(例如過濾不相關內容如廣告)、資料擴增。 7.不當資料檢測措施(Measures for unsuitability):在資料獲取或處理中實施的任何方法描述(如有),以偵測考慮模型預期用途的不適當資料源,包括但不限於非法內容、兒童性虐待材料 (CSAM)、非同意親密影像 (NCII),以及導致非法處理的個人資料。 8.可識別偏誤檢測措施(Measures to detect identifiable biases):描述所採取的偵測與矯正訓練資料存在偏誤的方法。 (七)、訓練期間的計算資源(Computational resources (during training)) 1.訓練時間(Training time):所測量期間及其時間的描述。 2.訓練使用的計算量(Amount of computation used for training):說明訓練使用的測量或估計計算量,以運算表示並記錄至其數量級(例如 10^24 浮點運算)。 3.測量方法論(Measurement methodology):描述用於測量或估計訓練使用計算量的方法。 (八)、訓練及推論的能源消耗(Energy consumption (during training and inference)) 1.訓練耗能(Amount of energy used for training)及其計量方法:說明訓練使用的測量或估計能源量,以百萬瓦時表示(例如 1.0x10^2 百萬瓦時)。若模型能源消耗未知,可基於所使用計算資源的資訊估計能源消耗。若因缺乏計算或硬體提供者的關鍵資訊而無法估計訓練使用能源量,提供者應披露所缺乏的資訊類型。 2.推論運算耗能的計算基準 (Benchmarked amount of computation used for inference1)及其方法:以浮點運算表示方式(例如 5.1x10^17 浮點運算)說明推論運算的基準計算量,並提供計算任務描述(例如生成100000個代幣Token)及用於測量或估計的硬體(例如 64個Nvidia A100)。 二、提供GPAI模型相關資訊(措施1.2) 通用人工智慧模型投放市場時,應透過其網站或若無網站則透過其他適當方式,公開揭露聯絡資訊,供AIO及下游提供者請求取得模型文件中所含的相關資訊或其他必要資訊,以其最新形式提供所請求的資訊。 於下游提供者請求時,GPAI模型提供者應向下游提供者提供最新模型文件中適用於下游提供者的資訊,在不影響智慧財產權及機密商業的前提下,對使其充分了解GPAI模型的能力及限制,並使該等下游提供者能夠遵循其AIA法案義務。資訊應在合理時間內提供,除特殊情況外不得超過收到請求後14日。且該資訊的部分內容可能也需要以摘要形式,作為GPAI模型提供者根據AIA法案第53條第1項(d)款必須公開提供的訓練內容摘要 (training content summary) 的一部分。 三、確保資訊品質、完整性及安全性(措施1.3) GPAI模型提供者應確保資訊的品質及完整性獲得控制,並保留控制證據以供證明遵循AIA法案,且防止證據被非預期的變更 (unintended alterations)。在制定、更新及控制資訊及記錄的品質與安全性時,宜遵循既定協議 (established protocols) 及技術標準 (technical standards)。 參、事件評析 一、所要求之資訊完整、格式標準清楚 歐盟AGPAI實踐準則」的「透明度 (Transparency)」提供模型文件的標準表格,做為GPAI實踐準則透明度章節的核心工具,從名稱、屬性、功能等最基本的模型資料,到所需軟硬體、使用政策、散佈管道、訓練資料來源、演算法設計,甚至運算與能源消秏等,構面完整且均有欄位說明,而且部分欄位直接提供選項供勾選,對於GPAI模型提供者提供了簡明容易的AIA法案資訊要求合規做法。 二、表格設計考量不同利害關係人的資訊需求 GPAI實踐準則透明度章節雖然主要目的是為GPAI模型提供者對由需要充分了解模型及其能力的下游提供者提供資訊,以便其在產品履行AIA法案下的義務。但相關資訊的提供目的,同時也在於讓AIO及國家主管機關履行其AI法案職責,特別是高風險AI的評估。因此,表格的資訊標示區分該欄資訊係用於AI辦公室 (AIO)、國家主管機關 (NCAs) 或下游提供者 (DPs)者,例如模型的訓練、資料清理處理方法、不當內容的檢測、測試及驗證的資料來源、訓練與運算的能秏、就多屬AIO、NCAs有要求時始須提供的資料,無須主動公開也兼顧及GPAI模型提供者的商業機密保護。 三、配套要求公開並確保資訊品質 該準則除要求GPAI模型提供者應記錄模型文件,並要求於網站等適當地,公開提供下游提供者請求的最新的資訊。而且應在不影響智慧財產權及機密商業的前提下,提供其他對使其充分了解GPAI模型的能力及限制的資訊。同時,為確保資訊的品質及完整性獲得控制,該準則亦明示不僅應落實且應保留證據,以防止資訊被非預期的變更。 四、以透明機制落實我國AI基本法草案的原則 我國日前已由國科會公告人工智慧基本草案,草案揭示「隱私保護與資料治理」、「妥善保護個人資料隱私」、「資安與安全 」、「透明與可解釋 」、「公平與不歧視」、「問責」原則。GPAI實踐準則透明度章節,已提供一個重要的啟示—透過AI風險評測機制,即可推動GPAI模型資訊的揭露,對相關資訊包括訓練資料來源、不當內容防止採取做一定程度的揭露要求。 透過相關資訊揭露的要求,即可一定程度促使AI開發提供者評估認知風險,同時採取降低訓練資料、生成結果侵權或不正確的措施。即便在各領域作用法尚未能建立落實配套要求,透過通過評測的正面效益,運用AI風險評測機制的資訊提供要求,前揭草案揭示的隱私、著作、安全、問責等原則,將可以立即可獲得一定程度的實質落實,緩解各界對於AI侵權、安全性的疑慮。 本文為資策會科法所創智中心完成之著作,非經同意或授權,不得為轉載、公開播送、公開傳輸、改作或重製等利用行為。 本文同步刊登於TIPS網站(https://www.tips.org.tw) [1]The European AI Office, The General-Purpose AI Code of Practice, https://digital-strategy.ec.europa.eu/en/policies/contents-code-gpai 。(最後閱覽日:2025/07/30) [2]The European AI Office, Code of Practice for General-Purpose AI Models–Transparency Chapter, https://ec.europa.eu/newsroom/dae/redirection/document/118120 。(最後閱覽日:2025/07/30)

歐盟將通過新的指令加強科學研究所中所使用之動物的保護

  2010年9月歐洲議會通過第2010/63/EU號指令(DIRECTIVE 2010/63/EU)修正文本,新的指令將修正第86/609/EEC 指令(Directive 86/609/EEC)原有規定,以加強對科學實驗用動物的保護。   2010年5月世界動物健康組織(the World Organisation for Animal Health, OIE)第78屆 大會中通過了第一個國際動物福祉標準,該標準納入OIE陸棲動物健康法典規範(OIE Terrestrial Animal Health Code)做為研究與教育用動物保護的準則,歐盟作為主要的提案者於是加速規範修正作業以回應OIE之承諾。新指令將規定歐盟各國主管機關必須在同意研究採用動物實驗前,評估其他研究方式的可能性並進行倫理評估,如需採用動物實驗應儘可能減少被試驗動物之痛楚,此外新指令也確保被實驗動物享有應有的生存環境,如適當大小的籠子等的要求。   新指令適用範圍將包括教育、訓練與基礎研究用的動物,其包含所有人類以外的活體脊椎動物以及某些可能感受痛楚的物種。靈長類動物如人猿的實驗也被禁止,除非為了該物種本身之生存所需,或者其他可能造成人類生存威脅或疾病之避免所必要方得於各國政府同意下進行之。新的指令將擴大禁止使用人猿、黑猩猩、彌猴等靈長類動物的實驗,除非有證據顯示其他物種的實驗無以達成靈長類動物實驗所能達成之目的,但也有成員國表示擴大靈長類動物實驗的限制將對於神經退化性疾病如阿茲海默症等的研究造成阻礙。   動物實驗的3R原則—取代、減量與改善(replacing, reducing, and refining)在第2010/63/EU號指令修正文本都已有相關規範,歐盟執委會表示歐盟將繼續致力於強化實驗用動物的福祉,同時為了確保新法的貫徹,新指令將授權設立歐盟層級的示範實驗室(Reference Laboratory at European Union level)協調各國採取替代動物實驗的方式。歐盟執委會表示新的指令將會在今年秋天公布。

產業創新條例因應放寬公司研發抵減、加強留才制度之修正草案

德國2021年再生能源法修正草案最新發展

  德國的再生能源法(Renewable Act)在經歷過2014年及2016年兩次較大的修正後,今年度九月由部分上議院議員提出修正草案。   德國再生能源法起源於20年前,當時主要重點在於提升離岸發電、太陽光電(Solar PV)及生物氣體、水力資源對於城市用電的供應率。由於現階段德國幾乎半數的城市用電仰賴上開再生能源,因此2021年度的修法上,主要導向了協助再生能源廠得以更完善的準備進入市場,包括與現有的政策發展接軌,例如2020年的國家氫能源政策(hydrogen strategy)及電動車的電價制定等。以下將列舉數項較為重大之項目: 實現2050年碳中立的目標 結合歐盟遠大的氣候目標 擴大再生能源產能 重新制定再生能源徵收稅款 提高公眾對於再生能源的接收度 於德國南方增設更多風力發電的渦輪機及生物燃料 訂定彈性電價 提升太陽能板安裝回饋酬勞 響應氫能源政策,擬使氫能源廠商於使用再生能源時得免付費(但此項提案尚待利害關係人取得共識)。   本次再生能源法的修正提案誠然立意良善,但仍有不少批評者認為,本次修法未將日後使用再生能源的人數可能增加一事納入考量,且未將老舊風機重新供電等事納入法規中。   而根據11月份修法決議結果,德國政府並未採納上開提案,其中主要理由是認為該草案所列之內容無法達成氣候目標(climate targets),並建議該提案應擴張再生能源產能,尤其是離岸風電及太陽能。德國能源部則認為提案中所預估的2030年電力需求過低,無法切實因應未來的需求,是以,未來德國再生能源法之修法方向仍有待持續觀察。

TOP