新加坡針對閒置頻譜利用之政策管制架構提出公眾諮詢

  隨著行動通訊需求的提升,各國對無線頻譜資源需求若渴,除了極力釋出更多頻譜資源外,也針對既有頻譜的使用效率加以提升,以滿足頻譜的需求,無線廣播電視為了維護收訊品質,在各頻道之間保留相當大的空白區域,以避免訊號干擾;另一方面,無線廣播電視訊號在人口較少或是有線電視較發達的區域,訊號覆蓋的要求較低,產生許多無訊號的地帶,形成頻譜閒置的狀況。因此目前許多國家將提升頻譜效率的政策,運用在無線廣播電視所使用的頻段上,透過活用上述處於閒置的頻譜資源,滿足更多的無線通訊需求。

 

  目前動態頻譜接取技術就是這樣的一個創新,允許隨機的、免執照使用閒置頻譜,以提高頻譜效率。目前最主流的運用場域在無線廣播電視的頻道上,如前所述,這些頻譜的空白保留區域或是閒置未用的狀況,稱為電視閒置頻譜(TV White Space,TVWS)。TVWS可用以替代類似Wi-Fi功能的無線寬頻通訊,但能夠以更低的功耗與成本加以部署,並擁有更大的涵蓋範圍。TVWS技術亦可以無線連接多種智慧型的終端設備,並具有良好的成本效益,提供更多創新的應用和服務。

 

  新加坡資通訊發展管理局(The Infocomm Development Authority of Singapore,IDA)在2011年起結合相關業者開始進行概念實證運行,目的在驗證新加坡是否具有成功使用TVWS技術的可行性,並於2012年宣布成功。隨後,在IDA的支持下,集合資通訊業者成立「新加坡閒置頻譜先導團隊(Singapore White Space Pilot Group,SWSPG)」的產業協會,在新加坡各地展開了一系列的TVWS先導計畫。

 

  這些先導計畫包括新加坡國立大學的智慧能源控制與智慧電表、新加坡島嶼鄉村俱樂部的寬頻服務、樟宜機場與港口周邊地區提供公共的Wi-Fi熱點。這些先導計畫的作用也在於探詢TVWS技術如何補強既有的寬頻基礎設施,克服新加坡天然環境的限制,提供更多創新的消費和商業應用。這些先導計畫也展現出TVWS可以運用提供良好的多元化的商業服務,深受參與先導計畫的使用者肯定。總體而言,這些先導計畫證明TVWS技術可為新加坡的無線服務提供更多可用頻譜,從而提升了頻譜使用的整體效率。

 

  在這些先導計畫的成功基礎上,IDA認為為了促進TVWS的更大發展,應該展開TVWS設備與使用的的準則定義與確定管制上的的需求,一方面保護既有服務,一方面則必須避免各頻段可能產生的頻率干擾。IDA於2013年6月公布關於TVWS管制架構的公眾諮詢,藉以深入了解產業的需求,制訂完善的管制架構,確保TVWS的發展符合國際趨勢、新加坡的地理條件與市場環境的需求。IDA並希望能於2014年公布TVWS相關設備與服務的準則及管制架構。

相關連結
※ 新加坡針對閒置頻譜利用之政策管制架構提出公眾諮詢, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=6264&no=57&tp=1 (最後瀏覽日:2026/01/08)
引註此篇文章
你可能還會想看
日本促進產學合作相關計畫簡介

  日本在促進產學合作,除了A-step計劃外,亦成立了創新中繼站構築援助事業(Support Program for Forming Innovation Hub)與創新中心(COI)等。   創新中繼站構築援助事業,由JST協助國立研發法人推動改革,以強化法人之效能,並做為大學與企業之中繼站,大學主司研究,企業則負責產業化階段,中間點則由JST與國立研發法人一同合作。JST負責召集人才、評定人才並進行創業援助、技術調查與分析。國立研發法人則提供人才培育及交流所需之資源(例如:機具設備的整修與提供,推動研究開發等等)。   創新中心(COI)則是政府預測未來10年之社會變遷及人口結構,再根據未來社會可能之需要,以建立理想社會為目標,通常進行具有高難度、高風險研發之創新中心。目前日本有18個創新中心分佈全國各地,由國家指定企業與大學共同進行,但是研究負責人只能是大學。

何謂「LAB- FAB - APP- Investing in the European future we want」?

  歐盟執委會研究創新總署之高級專家小組(High Level Group)2017年7月3日提交名為《研究、生產、應用—投資於我們所期待的歐洲未來》(LAB- FAB - APP- Investing in the European future we want)報告,呼籲歐盟及成員國大幅增加對研發創新的投入。該報告認為過去20年,工業化國家2/3的經濟增長歸功於研發創新。歐洲必須妥善利用大量知識,將創新潛力轉化為現實的經濟增長,從而促進歐洲繁榮,解決社會挑戰。該報告提出11項建議:(1)將歐盟及成員國的預算優先考慮投入研發創新,將下一個歐盟研發創新計畫的預算提高一倍;(2)建立可創造未來市場的歐盟創新政策;(3)投入未來教育培訓,投資創新人才;(4)編制能夠發揮更大影響力的歐盟研發創新計畫,堅持目標、完善評估系統以增加計畫靈活度;(5)採取任務導向、焦點式措施應對全球挑戰;(6)使歐盟資金分配更加合理,實現與歐盟結構性基金的協同效應;(7)進一步簡化計畫管理模式,更注重效果而不是過程;(8)激勵公眾參與創新;(9)更好地促進歐盟及成員國的研發創新投資合作;(10)使國際合作成為歐盟研發創新的特徵,通過共同資助等方式,開放歐盟研發創新計畫;(11)將歐盟研發創新品牌化,擴大研究創新成果及作用。

美國聯邦地區法院宣告伊利諾州之電玩遊戲法案違憲

  美國聯邦地區法院於 12月初對伊利諾州禁止商家販售或出租色情及暴力電玩遊戲予未成年人,如有違反將會處以美金1000罰金之規定做出判決,宣告該等法律規定違憲,並對其執行發出禁止令。   法官指出該等規定將對電玩遊戲的創作以及發行造成寒蟬效應,沒有證據可以證明暴力電玩遊戲會對未成年遊戲者造成持續性的負面影響,使其思想和行為具有侵略性,且其對色情的定義並不是很明確。由於此等規定已對於電玩遊戲業者之言論自由造成限制,但是並沒有實質重大的理由得以支持該等限制,故宣告該等規定違憲,並對其執行發出禁止令。   伊利諾州一案並不是美國法院第一遭禁止相關電玩遊戲規定之執行的判決,於今年 11月時,美國法院即曾禁止密西根州執行禁止商家販售暴力電玩遊戲之規定。

合成資料(synthetic data)

  「合成資料」(synthetic data)的出現,是為了保護原始資料所可能帶有的隱私資料或機敏資料,或是因法規或現實之限制而無法取得或利用研究所需資料的情況下,透過統計學方法、深度學習、或自然語言處理等方式,讓電腦以「模擬」方式生成研究所需之「合成資料」並進行後續研究跟利用,透過這個方法,資料科學家可以在無侵犯隱私的疑慮下,使合成資料所訓練出來的分類模型(classifiers)不會比原始資料所訓練出來的分類模型差。   在合成資料的生成技術當中,最熱門的研究為運用「生成對抗網路」(Generative Adversarial Network, GAN)形成合成資料(亦有其他生成合成資料之方法),生成對抗網路透過兩組類神經網路「生成網路」(generator)與辨識網路(discriminator)對於不同真偽目標值之反覆交錯訓練之結果,使其中一組類神經網路可生成與原始資料極度近似但又不完全一樣之資料,也就是具高度複雜性與擬真性而可供研究運用之「合成資料」。   英國國防科技實驗室(Defense Science and Technology Laboratory, DSTL)於2020年8月12日發布「合成資料」技術報告,此技術報告為DSTL委託英國航太系統公司(BAE Systems)的應用智慧實驗室(Applied Intelligence Labs, AI Labs)執行「後勤科技調查」(Logistics Technology Investigations, LTI)計畫下「資料科學與分析」主題的工作項目之一,探討在隱私考量下(privacy-preserving)「合成資料」當今技術發展情形,並提供評估技術之標準與方法。   技術報告中指出,資料的種類多元且面向廣泛,包含數字、分類資訊、文字與地理空間資訊等,針對不同資料種類所適用之生成技術均有所不同,也因此對於以監督式學習、非監督式學習或是統計學方法生成之「合成資料」需要採取不同的質化或量化方式進行技術評估;報告指出,目前尚未有一種可通用不同種類資料的合成資料生成技術或技術評估方法,建議應配合研究資料種類選取合適的生成技術與評估方法。

TOP