隨著英國國家健康服務(National Health Service, NHS)的改革,英國於去(2012)年3月27日通過衛生和社會照護法(The Health and Social Care Act 2012)。當中一項主要的變革即是成立衛生與社會照護資訊中心(The Health and Social Care Information Centre, HSCIC)作為醫療健康資料的專責機構。而這樣的變革,也影響過去病歷資料的蒐集、分享和分析方式。依據衛生和社會照護法的規定,HSCIC若受到衛生部長(Secretary of State for Health)指示、或來自照護品質委員會(Care Quality Commission, CQC)、英國國家健康與臨床卓越研究院(National Institute for Health and Clinical Excellence, NICE)、醫院監管機構Monitor的命令要求時,在這類特定情況之下,可以無需尋求病患同意,而從家庭醫師(GP Practice)處獲得病患的個人機密資料(Personal Confidential Data, PCD)。
今(2013)年3月獲NHS授權, 由HSCIC於6月開始執行的care.data服務,即是依據前述立法所擬定之方案。care.data藉由定期蒐集醫療照護過程中的相關資料,對病患於國內所為的各項健康和社會照護資訊(例如病患的住院、門診、意外事故和緊急救護記錄)進行具延續性之連結。以提供即時、正確的NHS治療和照護資訊給民眾、門診醫師和相關部門之官員,進而達到care.data所設定的六項目標,支援病患進行治療的選擇、加強顧客服務、促進資訊透明性、優化成果產出、增加問責性,並驅動經濟成長。
然而,由於care.data是以英國民眾就醫行為中,屬於基礎醫療的家庭醫師(General Practitioner, GP)系統為基礎,所提取的資料包括家族歷史、接種疫苗、醫師診斷、轉診記錄、生理指標,以及所有NHS處方。其次,care.data在進行初級和次級資料連結時,將會透過NHS號碼、生日、性別和郵遞區號,這四項可識別資料的比對。因此雖然care.data在涉及敏感性資料時會加以排除,但此項服務仍引起社會上相當大的爭議。包括部分醫師、隱私專家和的社會團體皆提出質疑,質疑care.data是否有充分告知病人、HSCIC所宣稱的匿名性是否足夠、此項服務對醫病關係的衝擊、該服務所宣稱的資料分享退出機制(opt-out)並未妥善等。
care.data是NHS所推出的創新資料現代化服務,但同時也涉及病患隱私權保護之議題。反觀我國近來所推動的醫療健康資訊加值再利用政策,英國的案例值得我們持續觀察其發展。
近年來,關於「競業禁止條款」之合法性及有效性等,一直是被廣泛討論的議題,在2023年1月5日,美國聯邦貿易委員會(Federal Trade Commission, FTC)發布禁止「競業禁止條款」之提案,並指出依調查結果顯示,其造成勞工薪資降低及壓抑流動性等負面影響,故企業未來可能須透過主張《統一營業秘密法》(Uniform Trade Secrets Act)或《防衛營業秘密法》(Defend Trade Secrets Act)等,以保護營業秘密。同時應值注意者為,有論者提出未來解決方案為企業應推動自動化營業秘密管理系統,而其中一個必要元素是應採取「資料存證」措施,以證明營業秘密存在及擁有。 所謂自動化營業秘密管理系統,即透過工具,對於營業秘密進行「識別」與「評估」,並應對於不具有經濟價值的資訊進行解密。惟為避免增加營業秘密外洩風險,故相關系統應僅留存後設資料。與此同時,為取得盜用營業秘密相關的勝訴裁判,除應留存及保護任何時點的後設資料外,更應採取能夠證明營業秘密存在及擁有之措施,如透過雜湊值或區塊鏈等技術進行「資料存證」,以確保能夠在訴訟上提供必要證據。 最後,近期司法院、法務部、臺灣高等檢察署、內政部警政署及法務部調查局共同規劃與建置「司法聯盟鏈」機制,藉由區塊鏈技術,並結合已通過經濟部智慧財產局審查核准之b-JADE證明標章,明定嚴謹之數位資料管理要求,以期強化數位證據同一性及建立簡便驗真程序。因此,未來企業若落實b-JADE證明標章所定之管理要求,將幫助營業秘密數位資料通過驗真程序。 本文同步刊登於TIPS網站(https://www.tips.org.tw)
FDA發佈人工智慧/機器學習行動計畫美國食品藥物管理署(U.S. Food & Drug Administration, FDA)在2021年1月12日發布有關人工智慧醫療器材上市管理的「人工智慧/機器學習行動計畫」(Artificial Intelligence/Machine Learning (AI/ML)-Based Software as a Medical Device (SaMD) Action Plan)。該行動計畫的制定背景係FDA認為上市後持續不斷更新演算法的機器學習醫療器材軟體(Software as Medical Device, SaMD),具有極高的診療潛力,將可有效改善醫療品質與病患福祉,因此自2019年以來,FDA嘗試提出新的上市後的監管框架構想,以突破現有醫療器材軟體需要「上市前鎖定演算法、上市後不得任意變更」的監管規定。 2019年4月,FDA發表了「使用人工智慧/機器學習演算法之醫療器材軟體變更之管理架構—討論文件」(Proposed Regulatory Framework for Modifications to Artificial Intelligence/Machine earning (AI/ML)-Based Software as a Medical Device (SaMD) - Discussion Paper and Request for Feedback)。此一諮詢性質的文件當中提出,將來廠商可在上市前審查階段提交「事先訂定之變更控制計畫」(pre-determined change control plan),闡明以下內容:(1)SaMD預先規範(SaMD Pre-Specification, SPS):包含此產品未來可能的變更類型(如:輸入資料、性能、適應症)、變更範圍;(2)演算法變更程序(Algorithm Change Protocol, ACP):包含變更對應之處理流程、風險控制措施,以及如何確保軟體變更後之安全及有效性。 根據「人工智慧/機器學習行動計畫」內容所述,「事先訂定之變更控制計畫」構想被多數(包含病患團體在內)的利害關係人肯認,並於相關諮詢會議當中提出完善的細部建言。FDA將根據收到的反饋意見,於2021年以前正式提出有關人工智慧/機器學習上市後監管的指引草案(Draft Guidance),並持續研究提高演算法透明度、避免演算法偏見的方法。
日本經產省預計向國會提出「不正競爭防止法」修正草案進行審議 美國HHS發布2024-2030年聯邦健康IT計畫推動共享醫療體系美國衛生及公共服務部(United States Department of Health and human Services, HHS)於2024年9月底發布「聯邦健康IT策略計畫」(Federal Health IT Strategic Plan),強化電子健康資訊存取、交換和使用,提升健康管理能力、改善醫療照護體驗、推動健康研究及創新,並提出四大目標 四大目標包括: 1. 提倡健康福祉:賦予個人管理自身健康的權利,確保個人和公眾獲得現代且公平的醫療服務,並促進社區健康與安全。 2. 強化醫療照護的提供和體驗:提供安全、公平且優質的醫療服務,擴大病人獲取優質醫療途徑並減少健康差異。加強競爭和透明度改善醫療體系,減輕醫療提供者的監管和管理負擔,並增強使用健康IT工具的信心。 3. 加速研究創新:允許健康IT使用者適當存取健康資料以推動個人和公眾健康的改善。加強個人和公眾層面研究與分析,透過使用代表性不足群體的健康資料,促進健康公平。 4. 醫療資料連結醫療系統:持續推動健康IT工具的開發和應用、資料共享、普及健康IT基礎設施、保護個人隱私和安全、整合的公共衛生資料和基礎設施。 在健康IT策略計畫中也聚焦在健康公平性、人工智慧應用、資料共享及安全性等議題,並提出了六大實施原則:以人為本的包容性設計、安全且優質的健康資訊、資料導向的決策、提升全民健康公平性、鼓勵創新和競爭。透過聯邦政府健康IT策略目標與原則,預期在6年內提供更有效、公平和現在化的醫療系統。