歐盟個人資料侵害事故通知規則於2013年8月生效

  歐盟個人資料侵害事故通知規則(regulation on the notification of personal data breaches)於2013年8月生效,其目的係為統一歐盟各會員國有關個人資料侵害事故通知之規定,以使當事人可以獲得一致性的待遇,同時,業者於歐盟境內亦可採取一致性的作法。此規則將適用於所有供公眾使用之電子通訊服務(publicly available electronic communications services)提供者,例如網路服務提供者(Internet service providers)及電信業者,同時,其敍明前述業者所持有之個人資料如有發生洩露或其他侵害時,應通知當事人與通報主管機關之技術性程序(technical measures)。

 

  依個人資料侵害事故通知規則之規定,業者於知悉個人資料侵害事故之24小時內通報主管機關,通報內容包括:事故發生之日期與時間、受侵害之個人資料之種類與內容、受影響之當事人人數、以及為降低對當事人可能帶的負面影響擬採取或己採取之組織上與技術上之措施。

 

  個人資料侵害事故可能對當事人之個人資料或隱私產生負面影響,業者必須立即通知當事人有關個人資料侵害事故之情事,例如遭侵害之個人資料涉及金融資訊、個人資料遭侵害會造成當事人名譽受損或業者知悉該個人資料已被未經授權之第三人擁有時。若業者能證明其對被侵害之個人資料已滿足主管機關所要求的技術保護措施,使未經授權而取得資料之人無法探知該遭侵害之資料內容時,即無須通知當事人有關個人資料遭侵害之情事。

相關連結
※ 歐盟個人資料侵害事故通知規則於2013年8月生效, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=6329&no=55&tp=1 (最後瀏覽日:2025/10/09)
引註此篇文章
你可能還會想看
歐洲網路暨資訊安全局發布「重要資訊基礎設施下智慧聯網之安全基準建議」

  歐洲網路暨資訊安全局(European Union Agency for Network and Information Security, ENISA)於2017年11月20號發布了「重要資訊基礎設施下智慧聯網之安全基準建議」。該建議之主要目的乃為歐洲奠定物聯網安全基礎,並作為後續發展相關方案與措施之基準點。   由於廣泛應用於各個領域,智慧聯網設備所可能造成之威脅非常的廣泛且複雜。因此,了解該採取與落實何種措施以防範IOT系統所面臨之網路風險非常重要。ENISA運用其於各領域之研究成果,以橫向之方式確立不同垂直智慧聯網運用領域之特點與共通背景,並提出以下可以廣泛運用之智慧聯網安全措施與實作:   (一) 資訊系統安全治理與風險管理   包含了與資訊系統風險分析、相關政策、認證、指標與稽核以及人力資源相關之安全措施。   (二) 生態系管理    包含生態系繪製以及各生態系的關聯。   (三) IT安全建築    包含系統配置、資產管理、系統隔離、流量過濾與密碼學等資安措施。   (四) IT安全管理   帳戶管理與資訊系統管理之相關安全措施。   (五) 身分與存取管理   有關身分確認、授權以及存取權限之安全措施。   (六) IT安全維護   有關IT安全維護程序以及遠端存取之安全措施。   (七) 偵測   包含探測、紀錄日誌以及其間之關聯與分析之安全措施。   (八) 電腦安全事件管理   資訊系統安全事件分析與回應、報告之資安措施。

巴西通過網際網路公民權法案

  2014年3月25日,巴西下議院通過編號2126/2011號法案,稱為網際網路公民權力法案(Marco Civil da Internet),是國際少見針對網際網路基本權利的立法例。該法律包含網際網路使用者權利、網路服務業者(ISP)責任、保障網際網路言論自由、保障隱私權、資料所有權及網際網路的普及化。   在數個月前,美國國家安全局被揭露監控全球網路流量的作法,引起國際間的軒然大波。許多國家均表達對於美國侵害其隱私及資訊安全,感到非常不滿。巴西政府自2011年以來,便逐步推動網路網路基本權利保障之立法,經過多年的程序,終於完成此次具代表意義的立法。該法律的規範對象涵蓋使用網際網路之個人、政府及企業,主要目的在保障網際網路的開放性、可接取集中立性。其主要規範重點在言論自由、網路中立性、隱私及個資保護、網路中介者責任等四部分。   在基本言論自由部分,該法律承諾保障言論及表達的自由,促進網路企業的競爭,維護公民使用網際網路的權利,促進網路服務的普及化;在網路中立性方面,則規範ISP不得對於網路內容及應用之傳輸有差別待遇,除非基於安全或技術支援的情形,而ISP進行差別待遇時,必須告知使用者;而在個人資料及隱私保護上,除了配合巴西既有的個資法處理資料收集、分析、處理及利用外,尚規範資訊保存與資訊所有權,對於ISP所保留有關使用者的資訊,除明訂各種隱私資料的保存期限外,也規範必須經過法院授權才能加以調閱,使用者對其資料也擁有所有權,ISP對於使用者資料必須嚴格保密;最後則是網路中介機構的責任,當發現網路上有侵害著作權之傳輸行為時,必須透過法院授權,ISP業者才能加以阻斷或刪除,而相對的,ISP業者只要遵守法院授權,便無需為網路上的侵權行為負擔連帶賠償責任,避免了業者因為用戶的侵權行為而連帶受到賠償責任。   巴西本次制訂的網際網路法律在國際上相對少見,例如其中的網路中立性規範也是屬於國際上少數將網路中立性加以明文規範的國家,對於網際網路上自由的維護可以說是非常的具有示範性。目前,國際上針對網際網路的規範模式也一直爭執未定,加強管制或放鬆管制的聲音也不斷的拉鋸,此次巴西的創新立法也可說相當具有參考性。

JST(日本科學技術振興機構)發表關於大學智財的政策建言

  於回顧過去10多年來在大學智慧財產相關的政策措施以後,日本科學技術振興機構(JST)智慧財產戰略中心於7月5日就「政策建言-回首長達十多年的大學智財相關政策措施並探求今後的發展」總結作出發表。根據外識學者專家所組成的JST智慧財產戰略委員會所作成的研議,其就大學智財此後所追求的目標願景,以及為達成該願景各個部門(政府、大學、技轉中心與JST)各自所應扮演的角色提出了整體的建議。   在建言中提到,大學智財的目標願景乃在於「以未來運用為導向擬定智財策略」與「確保研究成果轉化智慧財產,積極回饋國民社會」,並列舉各部門為達成目標願景所應執行之任務。   建言中主要提到的各部門任務如下所述: 【日本政府的任務】 ‧對於大學的智財評價,不應只限授權金收入,也應考慮共同研究、創新育成(由大學孕育而生的新創企業)的創出效果。 ‧應建構於獲得革新性的研究成果時,能夠搶先取得基礎專利、強化週邊專利的策略性的、機動性的強而有力的智財支援體制。 【日本大學、技轉中心的任務】 ‧為創造強勢的專礎專利,應能確保具備優秀判斷力的人材,與應進行充分的先前技術檢索。 ‧應以大學成果的早期實用化為導向,推進與中小、新創企業的合作關係。 ‧思考大學間、技轉中心間多樣而有效果的合作形態,積極謀求提升技轉機會。 ‧強化對學生與研究者的智財教育與智財進修。 【JST的任務】 ‧研析早期而積極的智財發掘與迅速而機動的資金投入等等主動性的支援模式。 ‧進行熟悉海外技術移轉的專業人材的配置與培育,且就對大學專利之權利侵害提供設置諮詢窗口等的支援措施。 ‧促進大學閒置專利的海外技術移轉。 ‧研議於鉅額資金投入而有多數大學、企業參與之特定大型計劃的場合,不受日本版the Bayh-Dole Act條款的限制,而由特定公共的機關等執行專利的管理。

德國聯邦資訊技術,電信和新媒體協會針對AI及自動決策技術利用提出建議指南

  德國聯邦資訊技術,電信和新媒體協會於2018年2月6日在更安全的網路研討會中針對利用人工智慧及自動決策技術利用提出建議指南(Empfehlungen für den verantwortlichen Einsatz von KI und automatisierten Entscheidungen),旨在提升企業數位化與社會責任,並提升消費者權益保護。 本份指南提出六項建議: 促進企業內部及外部訂定相關準則 例如規定公司在利用演算法和AI時,必須將影響評估列入開發流程,並列為公司應遵守的道德倫理守則,以確保開發的產品或服務符合公平及道德。 提升透明度 使用者如有興趣了解演算法及其含義,企業應協助調查並了解使用者想獲知的訊息,並透過相關訊息管道提升產品及服務透明度。因此,企業應努力使演算法及其操作和含義能夠被使用者理解。此亦涉及即將實施的歐盟一般資料保護規則中的透明度義務。在機器學習或深度學習情況下,可能會增加理解性和可追溯性難度,但有助於分析流程並使其更接近人類理解的方法在科學和商業實踐中,應特別關注並進一步討論。另外,透過教育及使用說明協助及控制功能,教導消費者係建立雙方信任的重要手段。企業應在第一線中說明產品或服務中使用的手段(演算法,機器學習,AI)。除了解釋使用那些技術來改進產品和服務外,應一併解釋如何從技術控制過程中獲得相關知識以及提供那些後援支持。另外,例如透過幫助頁面,儀表板或部落格,解釋發生什麼以及如何做出某些影響深遠的自動化決策,使用戶更了解有關使用自動決策相關訊息。因此建議企業採取強制有效以建立信任的措施,使用戶理解是否及如何使用相關演算法,此可能包括使用自動化決策,使用特定資料組和使用技術的目的,亦即使用戶對演算法,機器學習或AI支持的決策有基本的了解。 為全體利益使用相關技術 人工智慧等新技術之重要性不應被低估,目前在生活和工業等眾多領域皆有廣泛應用。對於個人和集體而言,將可帶來巨大的利益,因此應該充分利用。例如,人工智慧可降低語言障礙,幫助行動不便的人可更加獨立自主生活,改善醫療診斷,提升能源供應效率,甚至是交通規劃和搜索停車位,都只是人工智慧偉大且已被使用的案例。為促進技術發展,應公平地利用其優勢並預留商業應用模式的空間,同時充分解決涉及的具體風險。產業特定的解決方案十分重要,但應兼顧受影響者的利益,並與廣大公眾利益找出妥協平衡點,且應排除不適當的歧視。建議在使用決策支持技術時,應事先檢查相關後果並與其利益比較。例如,可以在資料保護影響評估的框架進行。作為道德準則的一部分,必須確保演算法盡可能量準確地預測結果。 開發安全的資料基礎 資料係人工智慧支援決策的基礎。與人為決策者相同,資料不完整或錯誤,將導致做出錯誤的決定。因此決策系統的可靠性仍取決資料的準確性。但資料質量和資料來源始終不能追溯到源頭,如果可能的話,只有匯總或非個人資料可用於分析或分類用戶群組。因此,確切細節不可被使用或揭露。因此建議企業應考慮要使用的資料、資料的類別和在使用AI系統前仔細檢查資料使用情況,特別是在自我學習系統中資料引入的標準,並根據錯誤來源進行檢查,且儘可能全面記錄,針對個人資料部分更應謹慎處理。 解決機器偏差問題 應重視並解決所謂機器偏差和演算法選擇和模型建立領域的相關問題。解釋演算法,機器學習或AI在基層資料選擇和資料庫時所產生決策偏見相當重要,在開發預期用途的演算法時必須納入考量,對員工應針對道德影響進行培訓,並使用代表性紀錄來創建可以識別和最小化偏差的方法。企業並應該提高員工的敏感度並培訓如何解決並減少機器偏見問題,並特別注意資料饋送,以及開發用於檢測模式的內、外部測試流程。 適合個別領域的具體措施和文件 在特別需要負責的決策過程,例如在車輛的自動控制或醫療診斷中,應設計成由責任主體保留最終的決策權力,直到AI的控制品質已達到或高於所有參與者水平。對類人工智慧的信任,並非透過對方法的無條件追踪來實現,而是經過仔細測試,學習和記錄來實現

TOP