簡析歐盟「能源效率指令」-- 以建築能源效率為核心

刊登期別
第25卷,第7期,2013年07月
 

※ 簡析歐盟「能源效率指令」-- 以建築能源效率為核心, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=6335&no=57&tp=1 (最後瀏覽日:2026/01/13)
引註此篇文章
你可能還會想看
英國發布「人工智慧:機會與未來決策影響」政策報告,並聚焦人工智慧運用及管理

  英國科學辦公室於2016年11月9日,發布一份政策報告:「人工智慧:機會與未來決策影響(Artificial intelligence: opportunities and implications for the future of decision making)」,介紹人工智慧對於社會及政府的機會和影響,此份政策報告並提出以下各項重要建議: (一)關於人工智慧及應用界定與發展   人工智慧是指由人工製造系統所表現出來的智慧。不僅是將現有的流程自動化,還包含制定目標,並利用電腦程式實現這些目標,常見案例包括線上翻譯、語音辨識、搜尋引擎篩選排序、垃圾郵件過濾、透過用戶回饋改善線上服務、預測交通流量、環境或社會經濟趨勢發展觀察等。 (二)未來對社會及政府利益及衝擊   人工智慧針對提高生產力有巨大的潛力,最明顯的就是幫助企業或個人更有效地運用資源,並簡化大量資料的處理,例如Ocado 及 Amazon這樣的公司正充份利用人工智慧改善倉儲及銷售網路系統,使得客戶可便利快速購得網購商品。   目前,政府也日益增加相關技術的運用,以提高公共服務效率,使資源達到最佳化分配;減少決策者被誤導的可能;使政府決策透明化;確保各部門更了解人民的意見。然政府在利用人工智慧及巨量資料時,應遵守倫理使用指南,並遵守英國資料保護法及歐盟一般資料保護規則等相關法規。   在巨量資料、機器人、自動系統對於勞動市場的衝擊一直都是關注的議題,對於面臨未來工作結構的轉型及相關技術人員的進修及培養,應及早規劃,以適應未來的轉變。 (三)關於相關道德及法律風險管理課題   人工智慧可能潛在相關道德倫理問題。許多專家認為政府應積極管理並降低風險發生可能性,可從以下兩個面向思考: (1)研究機器學習與個人資料運用結合時,對個人自由、隱私和同意等概念的影響。 (2)調適由人工智慧作決策行為時的歸責概念和機制。   有關實際案例之研究,則包括,執法單位在應用預測技術時,應避免以種族、國籍、地址作為標準,並嚴守無罪推定原則,以防止民眾受到歧視或不公平的指控;透過人工智慧可從公開資料推測出某些私人訊息或其親朋好友的消息,此訊息即可能超出原先個人同意披露的內容;原先匿名化及去識別化的訊息,因人工智慧功能加強,導至可能被重新識別,故須定期檢視該保護措施是否足夠。另外,人工智慧的演算偏差可能導致偏見的風險,為了降低這種風險,技術人員應採取對應措施。   針對責任及疏失的判斷,目前尚無太多的實務案例,但為保持對使用人工智慧的信任,仍需有明確的歸責制,可能有必要讓首席執行長或高級主管對人工智慧做出的決策負最終責任。許多專家也建議,部分技術內容須保持透明度,以確定技術使用時是否有盡到相關注意義務。   人工智慧已成為未來發展趨勢之一,對於社會整體層面影響將越來越深,新的技術除了可提升生產力,帶來便利的生活,同樣也會帶來衝擊。為促進相關產業發展及推展新技術的使用,應打造技術發展友善環境,並對於公眾安全進行相關風險評估,如果風險屬於現有監管制度範圍,應評估是否可充分解決風險,或是須要做相對應的調適。另外,在人工智慧融入現實世界同時,相關業者應注意相關產品安全性、隱私權保護和從業人員的倫理教育,以提高大眾對新技術的接受及信賴,並確保對於未來挑戰及轉變已做好萬全準備。

美國法院擬修正《聯邦證據規則》以規範人工智慧生成內容之證據能力

2025年5月2日,聯邦司法會議證據規則諮詢委員會(Judicial Conference’s Advisory Committee on Evidence Rules)以8比1投票結果通過一項提案,擬修正《聯邦證據規則》(Federal Rules of Evidence,FRE),釐清人工智慧(AI)生成內容於訴訟程序中之證據能力,以因應生成式AI技術在法律實務應用上日益普遍的趨勢。 由於現行《聯邦證據規則》僅於第702條中針對人類專家證人所提供的證據設有相關規定,對於AI生成內容的證據能力尚無明確規範,所以為了因應AI技術發展帶來的新興挑戰,《聯邦證據規則》修正草案(下稱「修正草案」)擬新增第707條「機器生成證據」(Machine-Generated Evidence),並擴張第901條「驗證或識別證據」(Authenticating or Identifying Evidence)的適用範圍。 本次增訂第707條,針對AI生成內容作為證據時,明確其可靠性評估標準,以避免出現分析錯誤、不準確、偏見或缺乏可解釋性(Explainability)等問題,進而強化法院審理時的證據審查基礎。本條規定,AI生成內容作為證據必須符合以下條件: 1. 該AI生成內容對於事實之認定具有實質助益; 2. AI系統於產出該內容時,係以充分且適當之事實或資料為輸入依據; 3. 該輸出結果能忠實反映其所依據之原理與方法,並證明此一應用於特定情境中具有可靠性。 本修正草案此次新增「AI生成內容」也必須合乎既有的證據驗證要件。原第901條a項原規定:「為符合證據之驗證或識別要求,提出證據者必須提供足以支持該證據確係其所聲稱之內容的佐證資料。」而修正草案擬於第901條b項新增「AI生成內容」一類,意即明文要求提出AI生成內容作為證據者,須提出足夠證據,以證明該內容具有真實性與可信度,方符合第901條a項驗證要件。 隨著AI於美國法院審理程序中的應用日益廣泛,如何在引入生成式AI的同時,於司法創新與證據可靠性之間取得平衡,將成為未來美國司法實務及法制發展中的重要課題,值得我國審慎觀察並參酌因應,作為制度調整與政策設計的參考。

美國網路安全聯盟提出網路安全策略建議報告

  美國網際網路安全聯盟(Internet Security Alliance,ISA)日前公佈一份新的報告,期使歐巴馬政府之「網路空間政策檢討」(Cyberspace Policy Review)能更進一步的落實。     網路安全聯盟主席Larry Clinton指出:「ISA對歐巴馬政府的網路安全政策表示支持,而目前民間機構需要設計一套規範,去落實ISA與政府對於網路安全重要議題共通之協議。本次所提出的報告,就是為了要提供能解決此一關鍵問題的架構。」     此份報告之標題為「利用ISA之社會契約模型執行歐巴馬政府之網路安全策略」(Implementing the Obama Cyber Security Strategy via the ISA Social Contract Model),而此報告強調必須重視網路安全的經濟意義。     Clinton認為,一旦討論到網路安全議題,會發現所有的經濟因素都對攻擊者有利,攻擊者總是能以簡單、成本低廉之攻擊方式得到巨大的利益。相對地,防守者(網路使用者)卻往往要付出高昂的成本。需要防護的領域太廣,而投資的回收通常很有限。必須從經濟的角度去平衡考慮成本與回收,才能建立具實效性且持續穩固的網路安全系統。     此份報告包含下列事項之架構:1.在商業計劃層面,創設政府與民間機構的合作夥伴關係,以強化網路安全;2.提出關於網路安全的國際議題;3.維持全球IT產業供應鏈的安全;4.建立新式資訊分享範例。     上述架構均依循ISA之網路安全社會契約模型,此一模型是源自於20世紀早期美國政府為了提供民間企業電信與電力服務,所成功建立之夥伴關係。

2005年為中國大陸電子商務法制年

  中國大陸於四月一日頒布實施「電子簽名法」後,將為電子交易、信用管理、安全認證、線上支付、稅收、以及隱私權保障等議題拉開序幕。雖然中國大陸對「公司法」、「票據法」、「證券法」與「拍賣法」均進行修訂並頒布新版本,然而卻未與「電子簽名法」銜接,也因此勢必進行後續修訂工作。    此外,為了加速立法進度,國務院辦公廳與國家發改會前後發布「關於加快電子商務發展的若干意見」與「電子商務專項通知」,信產部等部委的專項扶持基金並已開始接受電子商務企業的申請。同時,中國民生醫藥商務網的 CEO 表示,隨著中國大陸逐步開放外資進入電子商務、物流與線上支付等領域,中國電子商務企業必須盡快跨越誠信、支付、物流、稅收、盈利等五大面向,以贏得二次發展之歷史契機。

TOP