簡析歐盟「能源效率指令」-- 以建築能源效率為核心

刊登期別
第25卷,第7期,2013年07月
 

※ 簡析歐盟「能源效率指令」-- 以建築能源效率為核心, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=6335&no=57&tp=1 (最後瀏覽日:2025/12/09)
引註此篇文章
你可能還會想看
美國聯邦法官裁決AI「訓練」行為可主張合理使用

美國聯邦法官裁決AI「訓練」行為可主張合理使用 資訊工業策進會科技法律研究所 2025年07月07日 確立我國資料創新利用的法制基礎,建構資料開放、共享和再利用的各項機制,滿足民間及政府取得高品質、可信任且易於利用資料的需求,以資料提升我國數位發展的價值,並強化民眾權利的保障,我國於2025年6月16日預告「促進資料創新利用發展條例」,擬推動資料基礎建設,促進更多資料的釋出。 AI發展領先國際的美國,近日首次有聯邦法院對AI訓練資料表達肯定合理使用看法,引發各界關注[1]。我國已開始著力於AI發展所需的資料流通與有效利用,該判決將有助於啟示我國個人資料、著作資料合法使用之法制因應研析。 壹、事件摘要 2025年6月23日美國加州北區聯邦地方法院(United States District Court for the Northern District of California),威廉·阿爾斯法官(Judge William Alsup)針對Andrea Bartz、Charles Graeber、Kirk Wallace Johnson這三位美國作家,對Anthropic公司訓練大型語言模型(Large Language Model, LLM)時使用受其等著作權保護書籍一案,作出指標性的簡易裁決(summary judgment)[2]。 此案被告掃描所購買的實體書籍,以及從盜版網站複製取得的受著作權保護的書籍,儲存在其數位化、可搜尋的檔案中,用來訓練其正在開發的各種大型語言模型。原告主張被當開發Claude AI模型,未經授權使用大量書籍作為訓練資料的行為,為「大規模未經授權利用」。法院則以四要素分析架構,支持合理使用抗辯(Fair Use Defense),強調AI訓練屬於技術發展過程中不可或缺的資料利用,AI公司於模型訓練階段使用著作權書籍,屬於「合理使用」(Fair Use),且具「高度轉化性」(Highly Transformative),包括將購買的實體圖書數位化,但不包括使用盜版,也不及於建立一個永久性的、通用目的的「圖書館(library)」(指訓練資料集)。 貳、重點說明 依美國著作權法第107條(17 U.S.C. § 107)規定,合理使用需綜合考量四要素,法官於本案中認為: 一、使用的目的與性質—形成能力具高度轉化性 AI模型訓練的本質在於學習語言結構、語意邏輯,而非單純複製或重現原著作。AI訓練過程將大量內容作為輸入,經由演算法解析、抽象化、向量化,最終形成轉個彎創造出不同的東西 (turn a hard corner and create something different) 的能力,屬於一種「學習」與「再創造」過程。AI訓練的目的並非為了重現原著作內容,而是為了讓模型具備生成新內容的能力。這種「轉化性」(transformative use)極高,與單純複製或替代原著作的行為有明顯區隔[3]。 另外訓練過程對資料做格式變更本身並未增加新的副本,簡化儲存並實現可搜尋性 (eased storage and enabled searchability),非為侵犯著作權人合法權益目的而進行,亦具有轉化性 (transformative)。原告就所購買的紙本圖書,有權按其認為合適的方式「處置 (dispose)」,將這些副本保存在其資料集中,用於所有一般用途[4]。 二、受保護作品的性質--高度創作性非關鍵因素 法院認同原告所主張的書籍是具有高度創意(creative)的作品理應享有較強的保護。但法院亦認為合理使用的四個要素,須為整體衡量,儘管作品本身具有較高的創意性,但由於使用行為的高度轉化性以及未向公眾直接重製原作表達,整體而言,法院認定用於訓練 LLM 的行為構成合理使用[5]。 三、使用的數量與實質性--巨大數量係轉化所必要 法院認為AI模型訓練需大量內容資料,甚至必須「全書」輸入,看似「大量使用」,但這正是AI技術本質所需。AI訓練是將內容進行抽象化、數據化處理,最終在生成新內容時,並不會原封不動重現原作。所以,雖然訓練過程涉及全部作品,但AI模型的輸出並不會重現原作的具體表達,這與單純複製、重製作品的行為有本質區別[6]。 四、對潛在市場或價值的影響 本案法院明確指出,人工智慧模型(特別是原告的Claude服務)的輸出內容,通常為全新生成內容,並非原作的精確重現或實質模仿冒,而且Claude服務在大型語言模型(LLM)與用戶之間加入額外功能,以確保沒有侵權輸出提供予用戶。因此,此類生成內容不構成對原作的替代,不會削弱原作的銷售市場,也不會造成市場混淆,而且著作權法保護的是原創而非保護作者免於競爭[7]。 不過即便法院支持被告的合理使用主張,肯定AI訓練與著作權法「鼓勵創作、促進知識流通」的立法目的相符。但仍然指出提供AI訓練的合理使用(Fair Use)不代表資料來源的適法性(Legality of Source)獲得合法認定。沒有任何判決支持或要求,盜版一本本來可以在書店購買的書籍對於撰寫書評、研究書中的事實或創建大型語言模型 (LLM) 是合理必要 (reasonably necessary) 的。此類對原本可(合法)取得的圖書進行盜版的行為,即使用於轉化性使用並立即丟棄,「本質上」、「無可救藥地」(inherently、irredeemably)構成侵害[8]。 參、事件評析 一、可能影響我國未來司法判決與行政函釋 我國於現行著作權法第65條規定下,須於個案交予我國法院認定合理使用主張是否能成立。本案判決為美國首個AI訓練行為可主張合理使用的法院見解,對於我國法院未來就對AI訓練資料取得的合法使用看法,顯見將會產生關鍵性影響。而且,先前美國著作權局之報告認為AI訓練過程中,使用受著作權保護作品可能具有轉化性,但利用結果(訓練出生成式AI)亦有可能影響市場競爭,對合理使用之認定較為嚴格,而此裁定並未採取相同的見解。 二、搜取網路供AI訓練資料的合理使用看法仍有疑慮 依據本會科法所創智中心對於美國著作權法制的觀察,目前美國各地法院中有多件相關案件正在進行審理,而且美國著作權局的合理使用立場較偏向有利於著作權利人[9]。相同的是,均不認同自盜版網站取得的資料可以主張合理使用。然而AI訓練所需資料,除來自於既有資料庫,亦多來自網路搜取,如其亦不在可主張範圍,那麼AI訓練的另一重要資料來源可能會受影響,後續仍須持續觀察其他案件判決結果。 三、有效率的資料授權利用機制仍是關鍵 前揭美國著作權局報告認為授權制度能同時促進產業發展並保護著作權,產業界正透過自願性授權解決作品訓練之方法,雖該制度於AI訓練上亦尚未為一完善制度。該裁決也指出,可合理使用資料於訓練AI,並不代表盜版取得訓練資料可以主張合理使用。這對於AI開發而言,仍是須要面對的議題。我國若要發展主權AI, 推動分散串接資料庫、建立權利人誘因機制,簡化資料查找與授權流程,讓AI訓練資料取得更具效率與合法性,才能根本打造台灣主權AI發展的永續基礎。 本文為資策會科法所創智中心完成之著作,非經同意或授權,不得為轉載、公開播送、公開傳輸、改作或重製等利用行為。 本文同步刊登於TIPS網站(https://www.tips.org.tw) [1]相關新聞、評論資訊,可參見:Bloomberg Law, "Anthropic’s AI Book-Training Deemed Fair Use by US Judge", https://news.bloomberglaw.com/ip-law/ai-training-is-fair-use-judge-rules-in-anthropic-copyright-suit-38;Anthropic wins a major fair use victory for AI — but it’s still in trouble for stealing books, https://www.theverge.com/news/692015/anthropic-wins-a-major-fair-use-victory-for-ai-but-its-still-in-trouble-for-stealing-books;Anthropic Scores a Landmark AI Copyright Win—but Will Face Trial Over Piracy Claims, https://www.wired.com/story/anthropic-ai-copyright-fair-use-piracy-ruling/;Anthropic Wins Fair Use Ruling In Authors' AI Copyright Suit, https://www.thehindu.com/sci-tech/technology/anthropic-wins-key-ruling-on-ai-in-authors-copyright-lawsuit/article69734375.ece., (最後閱覽日:2025/06/25) [2]Bartz et al. v. Anthropic PBC, No. 3:24-cv-05417-WHA, Doc. 231, (N.D. Cal. June 23, 2025),https://cdn.arstechnica.net/wp-content/uploads/2025/06/Bartz-v-Anthropic-Order-on-Fair-Use-6-23-25.pdf。(最後閱覽日:2025/06/25) [3]Id. at 12-14. [4]Id. at 14-18. [5]Id. at 30-31. [6]Id. at 25-26. [7]Id. at 28. [8]Id. at 18-19. [9]劉家儀,美國著作權局發布AI著作權報告第三部分:生成式AI訓練-AI訓練是否構成合理使用?https://stli.iii.org.tw/article-detail.aspx?no=0&tp=1&d=9352。

美國通過基礎建設法案,加密貨幣之交易資訊應向國家稅務局申報

  於美國時間2021年11月15日,基礎建設法案(Infrastructure Investment and Jobs Act,以下稱基建法案)由美國總統拜登(Joe Biden)簽署後正式成為法律。依據白宮聲明,該法案旨在提供工作機會,改善港口與運輸以改善供應鏈,及其他關於美國基礎建設的投資等。此外該法案內容因涉及加密貨幣交易資訊申報議題,受到加密貨幣產業眾多矚目。   基建法案與加密貨幣產業有關者,主要是在美國國內稅收法典(Internal Revenue Code of 1986)第6050I與第6045條之既有規定中,分別將交易標的現金之定義新增數位資產(Digital Asset),及新增經紀商(Broker)之申報義務。所謂數位資產係以數位方式表彰一定價值,並透過加密保全的分散式帳本或其他類似技術所記錄之資產。經紀商認定範圍新增包括「關於任何為獲得報酬,而負責定期提供任何服務,代表他人實現數位資產轉移者」。法規生效後,任何價值超過10,000美元之交易訊息(諸如交易者姓名、社會安全號碼等資訊)應申報至美國國家稅務局(IRS),經紀商亦被要求申報其所經手交易至美國國家稅務局,新規範將適用於2023年12月31日後所應依法申報之文件。   區塊鏈技術去中心化的特性讓加密貨幣交易得以匿名化方式進行,然而新法一概將價值超過10,000美元的交易納入申報範圍。有論者認為,對於未建立身分驗證機制之小型平台業者、礦工以及散戶等經紀商或交易人,如何調整去匿名化之交易模式以遵循申報義務之法令,將是一大挑戰。綜上,新規範揭示政府將深化對於加密貨幣產業之監管,如何兼顧交易自由與交易秩序,將考驗著監管當局及業者之智慧。

美國參議院通過CISA網路安全資訊共享法案

  美國參議院於2015年10月27號通過網路安全資訊共享法(Cybersecurity Information Sharing Act; CISA)。本案以74票對21票通過,今年稍早眾議院通過類似法案,預計接下來幾周送眾議院表決。歐巴馬政府及兩院議員已就資訊共享法案研議多年,目前可望兩院就立法版本達成一致而立法成功。   主導本案的參議院情報委員會(Intelligence Committee)主席Richard Burr於法案通過後發表聲明表示,「這個作為里程碑的法案最終會更周全地保護美國人的個資不受外國駭客侵害。美國商業與政府機構遭受以日計的網路攻擊。我們不能坐以待斃」。副主席Sen. Feinstein於肯定法案對網路安全的助益之外,認為「我們在杜絕隱私憂慮的方面上盡了所有努力」。   CISA授權私人機構於遭受網路攻擊,或攻擊之徵兆(threat indicators)時,基於網路安全的目的,立即將網路威脅的資訊分享給聯邦政府,並且取得洩漏客戶個資的責任豁免權。基於同樣的目的,私人機構也被授權得以監視其網路系統,甚至是其客戶或第三人的網路。但僅以防禦性措施為限,並且不得採取可能嚴重危害他人網路之行動。相對於此,聯邦政府所取得該等私人機構自發性提供的網路威脅資訊,係以具體且透明的條款規制。此外,國土安全部(Department of Homeland Security)於符合隱私義務方針的方式下,管理電子網路資訊得以共享給其他合適的聯邦機構。檢察總長及國土安全部門秘書並建立聯邦政府接收、共享、保留及使用該等網路資訊的要件,以保護隱私。   相對於此,許多科技公司對此持反對態度,例如蘋果與微軟。隱私支持者更是於法案通過前後呼籲抵制,稱其為監視法。主要的論點圍繞在企業洩漏個資訊的寬鬆免責條款,這將會促使隱私憂慮。另一方面,法案反對者也不信任聯邦政府機構將會落實隱私保護,FBI、國家安全局(National Security Agency, NSA)及國家安全部則樂於輕易地取得、共享敏感的個資而不刪除之。   這些憂慮或許可以由法案投票前,網路法及網路安全學者共同發出的公開信窺知。「整體來說,(CISA)對有缺陷的網路安全中非常根本但真切的問題一無所助,毋寧僅是為濫權製造成熟的條件」。信中提到,該法案使聯邦機構得近用迄今為止公眾的所有資訊,並且對公司授權的範圍無明確界線,使公司對判斷錯誤的可能性毫無畏懼。這對於網路安全沒有幫助,方向應該是引導各機構提高自身的資訊安全及良好管理。

日本內閣府公布生成式AI初步意見彙整文件,提出風險因應、應用及開發兩大關注重點

日本內閣府於2023年5月26日召開第2次「AI戰略會議」(AI戦略会議),並公布「AI相關論點之初步整理」(AIに関する暫定的な論点整理)。鑒於AI對於改善國人生活品質、提高生產力無疑有相當助益,考量生成式AI甫問世,社會大眾對其潛在風險尚心存疑慮,內閣府遂以生成式AI為核心,延續先前已公布之「AI戰略2022」(AI 戦略 2022)、「以人為中心的AI社會原則」(人間中心の AI 社会原則),以「G7廣島峰會」(G7広島サミット)所提出之願景—「符合共同民主價值的值得信賴AI」為目標,提出「風險因應」及「應用與開發」兩大關注重點,供政府有關部門參考之同時,並期待可激起各界對於生成式AI相關議題之關注與討論: 一、風險因應:AI開發者、服務提供者與使用者應自行評估風險並確實遵守法規及相關指引;政府則應針對風險應對框架進行檢討,對於已知的風險,應先以現有的法律制度、指引與機制進行處理,假如現有法制等無法完全因應這些風險,則應參考各國作法盡速對現行制度進行修正。 AI的透明度與可信賴度於風險因應至關重要。若能掌握AI學習使用哪些資料、所學習資料之來源、AI如何產生結果等,就能針對使用目的選擇適合的AI,也較易因應發生之問題,並避免AI產生錯誤結果或在對話中洩漏機密資訊等。對此,本文件呼籲AI開發者及服務提供者依據現行法令和指引主動揭露資訊,政府則應對透明度和可信賴度相關要求進行檢討,並應依普及程度及各國動向對既有的指引進行必要之修正。 二、應用與開發:本文件建議政府部門積極使用生成式AI於業務工作上,找出提升行政效率同時不會洩漏機密之方法,並向民眾宣導AI應用之益處與正確的使用方式,以培養民眾AI相關技能與素養,藉以更進一步建構AI應用與開發之框架,如人才培育、產業環境準備、相關軟硬體開發等。

TOP