簡析歐盟「能源效率指令」-- 以建築能源效率為核心

刊登期別
第25卷,第7期,2013年07月
 

※ 簡析歐盟「能源效率指令」-- 以建築能源效率為核心, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=6335&no=57&tp=1 (最後瀏覽日:2026/01/22)
引註此篇文章
你可能還會想看
.Akamai 一案改變了邦巡迴法院認定間接侵權的判斷

  2014年Akamai Technologies針對最高法院提起上訴,因此發回聯邦巡迴法院重審,而後上訴法院認為Limelight Networks確實侵害Akamai的專利,Akamai並獲得$ 45.5萬美元的損害賠償。 2006年,Akamai Technologies公司(下稱Akamai)在美國馬薩諸塞州地方法院起訴Limelight Networks(下稱Limelight),指控Limelight侵害Akamai美國專利號6108703。原告Akamai的專利是有效傳送網頁內容的方法專利。而被告Limelight是經營伺服器網路的公司,和Akamai該專利的差別在於Limelight指示用戶完成其中一個修改的步驟。   本案從2006年一直持續到2014年向最高法院上訴為止,都是依據美國專利法第271條規定直接和間接侵權的概念。在原審認為「實施該方法專利」的侵權行為,是要求實施方要獨立完成該侵權行為,所以Limelight不能被視為直接侵權。又因為Limelight公司並沒有滿足單一實體規則(single-entity rule),控制或指示(control or direction)其實施方完成其他的專利之方法步驟,所以不用負共同侵權責任。   但上訴聯邦巡迴法院一致贊成Akamai被侵權,並指出如果被告 Limelight知道並使用專利權人Akamai的專利,而且執行大部分的步驟,只保留一項步驟未執行,進而引誘用戶執行該方法專利的最後一個步驟,且用戶真的執行了該最後一步驟, Limelight就構成美國專利法271(b)間接侵權中的引誘侵權。

日本內閣官房提出法案規範醫療個資去識別化業者,以促進研發利用

  日本內閣官房所屬之健康‧醫療戰略室於2017年3月, 向國會提出《有助醫療領域研究開發之匿名加工醫療資訊法律案》(医療分野の研究開発に資するための匿名加工医療資訊に関する法律案)。「健康‧醫療戰略室」係於2013年2月成立,並於同年8月根據《健康‧醫療推進法》設置「健康‧醫療戰略推進本部」。該部於2017年3月10日提出《有助醫療領域研究開發之匿名加工醫療資訊法律案》,針對醫療資訊匿名加工業者進行規制,使他人可安心利用經過去識別化處理之資訊,以便促進健康、醫療方面之研究及產業發展,形成健康長壽社會。上開法案主要可分為兩個部份︰ 國家責任與義務︰政府應提出必要政策與制定基本方針。 匿名加工醫療資訊業者之認定︰該部份又可分為匿名加工醫療資訊業者(以下簡稱業者)之認定與醫療資訊處理。   針對上述第2點之認定,為確保資訊安全,政府應設置認定機構,以便確認業者符合一定基準,並具備足夠之匿名加工技術,可為醫療個資去識別化。此外,在醫療資訊處理方面,該法案則規定醫療機關可在事先告知本人,且本人未拒絕提供時,將醫療資訊提供給業者。

德國聯邦資訊技術,電信和新媒體協會針對AI及自動決策技術利用提出建議指南

  德國聯邦資訊技術,電信和新媒體協會於2018年2月6日在更安全的網路研討會中針對利用人工智慧及自動決策技術利用提出建議指南(Empfehlungen für den verantwortlichen Einsatz von KI und automatisierten Entscheidungen),旨在提升企業數位化與社會責任,並提升消費者權益保護。 本份指南提出六項建議: 促進企業內部及外部訂定相關準則 例如規定公司在利用演算法和AI時,必須將影響評估列入開發流程,並列為公司應遵守的道德倫理守則,以確保開發的產品或服務符合公平及道德。 提升透明度 使用者如有興趣了解演算法及其含義,企業應協助調查並了解使用者想獲知的訊息,並透過相關訊息管道提升產品及服務透明度。因此,企業應努力使演算法及其操作和含義能夠被使用者理解。此亦涉及即將實施的歐盟一般資料保護規則中的透明度義務。在機器學習或深度學習情況下,可能會增加理解性和可追溯性難度,但有助於分析流程並使其更接近人類理解的方法在科學和商業實踐中,應特別關注並進一步討論。另外,透過教育及使用說明協助及控制功能,教導消費者係建立雙方信任的重要手段。企業應在第一線中說明產品或服務中使用的手段(演算法,機器學習,AI)。除了解釋使用那些技術來改進產品和服務外,應一併解釋如何從技術控制過程中獲得相關知識以及提供那些後援支持。另外,例如透過幫助頁面,儀表板或部落格,解釋發生什麼以及如何做出某些影響深遠的自動化決策,使用戶更了解有關使用自動決策相關訊息。因此建議企業採取強制有效以建立信任的措施,使用戶理解是否及如何使用相關演算法,此可能包括使用自動化決策,使用特定資料組和使用技術的目的,亦即使用戶對演算法,機器學習或AI支持的決策有基本的了解。 為全體利益使用相關技術 人工智慧等新技術之重要性不應被低估,目前在生活和工業等眾多領域皆有廣泛應用。對於個人和集體而言,將可帶來巨大的利益,因此應該充分利用。例如,人工智慧可降低語言障礙,幫助行動不便的人可更加獨立自主生活,改善醫療診斷,提升能源供應效率,甚至是交通規劃和搜索停車位,都只是人工智慧偉大且已被使用的案例。為促進技術發展,應公平地利用其優勢並預留商業應用模式的空間,同時充分解決涉及的具體風險。產業特定的解決方案十分重要,但應兼顧受影響者的利益,並與廣大公眾利益找出妥協平衡點,且應排除不適當的歧視。建議在使用決策支持技術時,應事先檢查相關後果並與其利益比較。例如,可以在資料保護影響評估的框架進行。作為道德準則的一部分,必須確保演算法盡可能量準確地預測結果。 開發安全的資料基礎 資料係人工智慧支援決策的基礎。與人為決策者相同,資料不完整或錯誤,將導致做出錯誤的決定。因此決策系統的可靠性仍取決資料的準確性。但資料質量和資料來源始終不能追溯到源頭,如果可能的話,只有匯總或非個人資料可用於分析或分類用戶群組。因此,確切細節不可被使用或揭露。因此建議企業應考慮要使用的資料、資料的類別和在使用AI系統前仔細檢查資料使用情況,特別是在自我學習系統中資料引入的標準,並根據錯誤來源進行檢查,且儘可能全面記錄,針對個人資料部分更應謹慎處理。 解決機器偏差問題 應重視並解決所謂機器偏差和演算法選擇和模型建立領域的相關問題。解釋演算法,機器學習或AI在基層資料選擇和資料庫時所產生決策偏見相當重要,在開發預期用途的演算法時必須納入考量,對員工應針對道德影響進行培訓,並使用代表性紀錄來創建可以識別和最小化偏差的方法。企業並應該提高員工的敏感度並培訓如何解決並減少機器偏見問題,並特別注意資料饋送,以及開發用於檢測模式的內、外部測試流程。 適合個別領域的具體措施和文件 在特別需要負責的決策過程,例如在車輛的自動控制或醫療診斷中,應設計成由責任主體保留最終的決策權力,直到AI的控制品質已達到或高於所有參與者水平。對類人工智慧的信任,並非透過對方法的無條件追踪來實現,而是經過仔細測試,學習和記錄來實現

英國高等法院裁定ISP 需打擊仿冒品網站

  英國高等法院(High Court)於2014年10月17日裁定網路服務提供者(Internet Service Provider, ISP)需協助業者打擊仿冒商品。全球第二大奢侈品集團Richemont Group於英國控告英國五大網路服務提供者即BSkyB、British Telecom、EE、TalkTalk和VirginMedia,要求網路服務提供者封鎖所有銷售該集團仿冒品的網站,避免網路使用者接觸到這些商標仿冒侵權的違法網站。   Richemont Group為Cartier、Piaget、Montblanc等精品品牌的母公司,其集團發言人表示此次的判決為打擊仿冒品網購業者邁前了一大步,對於法院認可防止涉及仿冒品的商標侵權有利於公眾利益感到滿意。   在此判決出爐前的三年以來,只有著作權人可就著作權侵權為由要求網路服務提供者封鎖仿冒品網站,如今首次將此權利延伸到商標權人手上,針對販售侵害商標權仿冒品的網站加以封鎖。   Arty Rajendra律師表示,網際網路讓販售仿冒品的非法網站能夠匿名並且隱藏位置,要封鎖販售仿冒品的網站是一件十分困難的事。因此,停止為這些網站帶來流量將如同停止供給他們氧氣,而網路服務提供者剛好在這環節中扮演非常重要的角色,因為他們可以限制對於這些非法網站的接觸(access)。   可預見的是,在此判決後,將會有越來越多商標權人要求網路服務提供者封鎖銷售仿冒品的網站。

TOP