德國聯邦議會於2015年通過資訊科技安全法(IT-Sicherheitsgesetz),主管機關為聯邦資訊安全局(Bundesamt für Sicherheit in der Informationstechnik, BSI),隸屬於德國聯邦內政部(Bundesministerium des Innern)。目的是為保障德國公民與企業使用的資訊系統安全,特別是在全國數位化進程中,攸關國家發展的關鍵基礎設施,讓德國成為全球資訊科技系統及數位基礎設施安全的先驅與各國的模範,同時藉此強化德國資訊科技安全企業的競爭力,提升外銷實力。 該法案主題包括,在關鍵基礎設施上改進企業資訊科技安全、保護公民的網路安全、確保德國聯邦資訊科技、加強聯邦資訊技術安全局的能力與資源、擴展聯邦刑事網路犯罪的調查權力。 該法主要係針對關鍵基礎設施營運者(Kritische Infrastrukturbetreiber) 進行安全要求,例如在能源、資訊科技、電信、運輸和交通、醫療、水利、食品、金融與保險等領域的企業。德國聯邦政府要求關鍵基礎設施的營運商,要滿足資訊科技安全的最低標準,且須向聯邦資訊安全局通報資訊安全事件。聯邦資訊安全局要對關鍵基礎設施營運商的資訊進行評估分析,並提供給關鍵基礎設施營運商彙整改善,以提高其基礎設施的保護。
日本「u-Japan政策」簡介 澳洲隱私保護辦公室檢討實施「選擇退出機制」後對「我的健康紀錄系統」之影響澳洲隱私保護辦公室(Office of the Australian Information Commissioner,OAIC)在2019年11月發布的「2018-2019年度健康數位資料報告」(Annual Report of the Australian Information Commissioner’s activities in relation to digital health 2018–19),主要說明澳洲政府實施「選擇退出機制」(opt-out)後,對「我的健康紀錄系統」(My Health Record System)(下稱系統)發生的影響,以及有將近1成的國民大量選擇退出系統,造成系統的醫療健康資料統計困難之檢討。 OAIC認為會發生國民大量選擇退出系統的原因,主要是不信任政府對系統資料保護及不清楚系統使用功能有關,因此提出年度報告,內容如下: 一、改善民眾對醫療資料保護的不信任,例如對醫療業者,開發保護病患隱私的指導教材,防止、外洩即時處理的能力。 二、加強宣傳,例如開發線上資源、影音等,讓民眾在使用系統時能有更清楚認識,且對選擇退出有更明確的認知。 三、改進系統設計,讓民眾能更清楚的看見使用說明,也能隨時掌握在系統上的資訊、設置警報提醒來防止他人侵入、也增加取消功能使資料達到永久刪除的效果。 建置該系統之目的,是因為國家有蒐集與使用國民的醫療健康資料需求,國民也能使用系統查看醫療紀錄、藥物過敏紀錄、曾使用與正在使用的藥物、血液檢查等;醫療人員也能透過醫療資料之電子化,減少重複及不必要的醫療檢查、對症下藥、避免因過敏引起的反應等,將醫療資源做有效的運用。 系統建置是依據「我的健康紀錄法」(My Health Records Act 2012)第三章第一節註冊規定,要將國民的醫療健康資料納入系統,但不願意加入者,得選擇退出系統。而澳洲政府依據此法訂定選擇退出機制,2018年7月正式實施,要求全民強制加入系統,同時開放選擇退出機制,讓不願意加入系統的國民能選擇退出系統;選擇退出機制截止日期原先在2018年10月中旬,但在國民大量反應下,澳洲政府決定延至2019年1月底;在選擇退出機制的實施截止後,OAIC在2019年11月對選擇退出機制做出檢討報告,期望能透過檢討報告提出的建議來增強民眾對系統的信任與促進系統使用率。
德國聯邦資訊技術,電信和新媒體協會針對AI及自動決策技術利用提出建議指南德國聯邦資訊技術,電信和新媒體協會於2018年2月6日在更安全的網路研討會中針對利用人工智慧及自動決策技術利用提出建議指南,旨在提升企業數位化與社會責任,並提升消費者權益保護。 德國司法及消費者保護部次長Gerd Billen於會議中指出,無論技術細節和具體應用如何發展,法律和消費者保護政策應確保人工智慧安全性,且不因此受歧視,以及盡可能確保技術利用透明度。而隨著人工智慧的發展,應設法解決使用人工智慧產生的法律問題。 例如,如何在製造商,供應商和消費者之間公平分配責任歸屬問題?在家庭,物流和手術室等領域已有越來越多具備自我學習的機器人被應用,相關權利是否會有所不同?如果機器出現不明原因故障,會發生什麼情況及如何處置?當機器透過在製造時尚未完全預定的環境感官認知做出具體決定時,該自動行為所生效力為何? 本份指南則提出六項建議: 促進企業內部及外部訂定相關準則 提升產品及服務透明度 使用相關技術應為全體利益著想 決策系統的可靠性仍取決資料的準確性。 重視並解決解決機器偏差問題 在特別需要負責的決策過程,應設計成由責任主體保留最終的決策權力,直到AI的控制品質已達到或高於所有參與者水平。