品牌永續發展之關鍵-從商標維權使用角度觀之

刊登期別
第25卷,第6期,2013年06月
 

※ 品牌永續發展之關鍵-從商標維權使用角度觀之, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=6340&no=57&tp=1 (最後瀏覽日:2026/02/09)
引註此篇文章
你可能還會想看
英政府推動開源碼計劃

  由英國政府所資助成立的一項計畫,希望透過開放原始碼廠商目錄及程式碼資料庫的建立等措施,加速公家單位對開放原始碼軟體的採用。這項名為「開放原始碼學院」( Open Source Academy )的計畫,是由副首相辦公室( Office of the Deputy Prime Minister )的電子創新投資計畫所贊助,預計在本月內將正式宣佈。   參與該計畫的開放原始碼協會( Open Source Consortium )執行總監表示,英國的公家機關在開放原始碼的採用上落後於歐洲各國,而這項計畫將改變目前的現況。地方政府已經可以透過網站開始分享程式碼,例如「地方政府軟體協會」( Local Authority Software Consortium )的網站。這項計畫裡的其他專案還包括了政府機構的入口網站計畫,可藉以尋找開放原始碼供應商的資訊;以及開放原始碼顧問的專業鑑定模式。

美國通過《音樂現代化法》(Music Modernization Act, MMA)

  美國於2018年10月11日正式簽署通過《音樂現代化法》(Orrin G. Hatch-Bob Goodlatte Music Modernization Act, MMA),該法搭起時代鴻溝的橋樑。《音樂現代化法》囊括三個從2017年分別通過的子法,並成為《音樂現代化法》中的三個大標題:   第一部份:音樂授權現代化(Music Licensing Modernization)   音樂作品本身的著作權、重製權是「大權利」(Grand Right),而公開傳輸權則是「小權利」(Small Right)。前者是恢復市場機制、自由議價,愈自由愈好;後者則是愈方便、愈能夠使音樂作品被世人看見愈好。《音樂現代化法》實踐了這個理想。《音樂現代化法》成立職司音樂著作授權的非營利組織「音樂機械灌錄集體授權組織」(The Mechanical Licensing Collective, MLC)。該組織是針對「數位音樂串流業者」量身打造,進行音樂數位使用(Digital Uses)的概括式授權(Blanket License)。再者,根據舊法,授權金是法定的,但《音樂現代化法》予以音樂創作人對其作品的授權金額保有協商權(Authority to Negotiate)。同時透過音樂資料庫的建立和免費線上檢索系統,方便音樂使用人查詢與媒合。   第二部份:經典音樂法(CLASSICS Act)   溯及賦予1923年1月1日至1972年2月14日之間的音樂,就未經授權而進行「數位錄音傳輸」(Digital Audio Transmissions)之行為,使之有從首次公開發行後95年的著作權保護。這裡授權的客體所會得到的權利相近於1972年後錄音著作「非互動式數位串流服務」所得到的保護。   第三部份:音樂製作人分潤(Allocation for Music Producers)   在科技世代,一個偉大的音樂創作,並非作曲人獨力完成的,《音樂現代化法》以分潤制度,讓音樂製作人、混音師及音訊工程師首次獲得法律上的權利。

企業監看員工網路活動法律爭議之防堵

歐盟第29條工作小組發布「自動化個人決策和分析指引」處理個人資料自動化決策與資料剖析風險問題

  歐盟第29條工作小組於2017年10月3日為因應歐盟一般資料保護規則(GDPR)第22條規定發布「自動化個人決策和分析指引」(Guidelines on Automated individual decision-making and Profiling for the purposes of Regulation 2016/679,2018年2月6日進一步修正,下稱指引),處理對個人資料自動化決策(automated decision-making)和個人檔案剖析(Profiling)的建立。   指引分為五個部分與最佳實踐建議,旨在幫助資料控制者(controller)合乎GDPR對個人資料自動化決策和分析的要求,內容包括下幾點:1.定義自動化決策和分析,以及GDPR對這些概念的處理方法;2.對GDPR第22條中關於自動化決策的具體規定;3.對自動決策和分析的一般規定;4.兒童和個人檔案剖析(Profiling)的建立;5.資料保護影響評估。   指引的主要內容包括:   個人檔案剖析(Profiling),意謂收集關於個人(或一群個人)的資料,並分析他們的特徵或行為模式,加以分類或分群,放入特定的類別或組中,和/或進行預測或評估(例如,他們執行任務的能力,興趣或可能的行為)。   禁止對個人資料完全自動化決策,包括有法律上法或相類重大影響的檔案剖析,但規則也有例外。應有措施保障資料主體的權利,自由和合法利益。   GDPR第22條第二項a之例外規定,(履行契約所必需的),自動化個人決策時,應該作狹義解釋。資料控制者必須能夠提出分析、自動化個人決策的必要性,同時考慮是否可以採取侵害隱私較少之方法。   工作小組澄清,關於在要求提供有關自動化決策所涉及的邏輯上有意義的資料時,控制者應以簡單的方法,告訴資料主體其背後的理由或依據的標準,而不得總是以自動化決策所使用算法進行複雜的解釋或者公開完整的算法為之。所提供的資料應該對資料當事人有意義。   對資料主體提供關於處理自動化決策上有關重要性和預期後果的資料,其意義在於必須提供關於該資料之用途或資料未來處理以及自動化決策如何影響資料主體的重要訊息。例如,在信用評等的情況下,應有權知道其資料處理的基礎,資料主體並能對其作出正確與否的決定,而不僅僅是關於決策本身的資料。   「法律效果」是指對某人的法律權利有影響,或者影響到個人法律關係或者其契約上權利。   工作組並未將GDPR前言71段視為絕對禁止純粹與兒童有關的自動決定,指出僅在某些情況下才有其適用(例如,保護兒童的福利)。   在基於自動化處理(包括分析)以及基於哪些決策產生法律效應或類似顯著效果的基礎上對個人方面進行系統和廣泛評估的情況下,進行資料保護影響評估並不局限於「單獨」自動化處理/決定。

TOP