英國建置著作數位著作授權平台(Copyright Hub),為數位時代增添授權管道

  英國智慧局於今 (2013) 年3月底時宣布投入15萬英鎊(約683萬元台幣)啟動一項名為「數位著作授權平台」(Copyright Hub)的建置計畫,並於今年7月正式上線,提供權利人、利用人、以及市場等關於著作權的授權相關事宜。

 

  根據該平台籌設小組所提出的營運方針 ,初步觀察該平台的定位與功能可歸納出三項特點:

一、平台定位為連結利用端與權利端之入口門戶(Portal)
  該匯集平台的定位為連結(connect)利用端與權利端的入口門戶,屬於一種著作權資訊匯集中心;只要涉及與著作權相關的內容作品,都可以加入此平台,不限於數位形式的內容作品,該平台並非要取代現有的市場機制,而係在促進現有的集體管理團體、作品登錄單位(Registry)以及跨領域之間有關著作權之交流。

二、平台的主要功能在於媒合權利端與利用端
  平台主要提供的服務內容為協助利用端找尋合適的內容以及權利資訊,降低其在海量的數位世界裡搜尋的成本。即平台作為第三方的媒合者,協助兩端進行相關授權事務,利用人可透過該平台向權利人提出授權申請,或是由權利人向不特定或潛在的利用者提出授權的邀約。另外,透過平台的資訊彙整機制,也可降低授權的爭議,例如專屬授權的重疊,以及授權範圍的疑義等等。

三、平台透過數位權利管理資訊系統搭配管理碼達成目的
  目前數位作品(Copyright Management System)已蔚為趨勢,因此該平台希望藉由多媒體識別網絡(Multimedia Identifier Network),在每一個數位作品加入一個管理碼,用以管理作品的權利資訊(包括授權內容等訊息)。此外,平台未來也會建立識別不同國際標準碼的機制,讓使用不同國際標準碼之作品在此平台上都能夠互相轉換或辨識。

 

  目前數位著作授權平台(2013年七月初)已經成立,不難發現英國政府的企圖心,欲透過此一平台媒介進一步將英國的音樂、圖像、影音透網絡推廣到世界。從文化層面來說,係希冀透過該媒介再傳遞或散布英倫三島的文化,進而透過間接或直接產生經濟上的價值反饋。我國向來蓬勃發展的音樂產業、出版產業、以及近來興起的影音產業,在華語世界或是亞洲等,競爭力不亞於其他國家,甚至近來流行文化已經深入擴散到鄰近國家當中,我們如何透過科技媒介整合文創產業,進而增加經濟上的產值,英國政府的此種思維脈絡足堪借鏡。

相關連結
※ 英國建置著作數位著作授權平台(Copyright Hub),為數位時代增添授權管道, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=6342&no=55&tp=1 (最後瀏覽日:2025/12/03)
引註此篇文章
你可能還會想看
IEA 發表「德國能源政策 2013 年檢閱報告」

美國平等就業機會委員會發布「評估就業篩選程序中使用軟體、演算法及AI之不利影響」技術輔助文件

美國平等就業機會委員會(Equal Employment Opportunity Commission, EEOC)於2023年5月18日發布「根據 1964 年《民權法》第七章評估就業篩選程序中使用軟體、演算法和AI之不利影響」(Assessing Adverse Impact in Software, Algorithms, and Artificial Intelligence Used in Employment Selection Procedures Under Title VII of the Civil Rights Act of 1964)之技術輔助文件(下簡稱「技術輔助文件」),以防止雇主使用自動化系統(automated systems)對求職者及員工做出歧視決定。 該技術輔助文件為EEOC於2021年推動「AI與演算法公平倡議」(Artificial Intelligence and Algorithmic Fairness Initiative)計畫的成果之一,旨在確保招募或其他就業決策軟體符合民權法要求,並根據EEOC 1978年公布之「受僱人篩選程序統一指引」(Uniform Guidelines on Employee Selection Procedures, UGESP),說明雇主將自動化系統納入就業決策所應注意事項。 當雇主對求職者與員工做出是否僱用、晉升、終止僱傭,或採取類似行動之決定,是透過演算法決策工具(algorithmic decision-making tool),對特定種族、膚色、宗教、性別、國籍或特定特徵組合(如亞洲女性),做出篩選並產生不利影響時,除非雇主能證明該決策與職位工作內容有關並符合業務需求,且無其他替代方案,否則此決策將違反《民權法》第七章規定。 針對如何評估不利影響,雇主得依UGESP「五分之四法則」(four-fifths rule),初步判斷演算法決策工具是否對某些族群產生顯著較低的篩選率。惟EEOC提醒五分之四法則推導出之篩選率差異較高時,仍有可能導致不利影響,雇主應依個案考量,使用實務常見的「統計顯著性」(statistical significance)等方法進一步判斷。 其次,當演算法決策工具係由外部供應商所開發,或由雇主授權管理人管理時,雇主不得以信賴供應商或管理人陳述為由規避《民權法》第七章,其仍應為供應商開發與管理人管理演算法決策工具所產生之歧視結果負責。 最後,EEOC鼓勵雇主應對演算法決策工具進行持續性自我評估,若發現該工具將產生不利影響,雇主得採取措施以減少不利影響或選擇不同工具,以避免違反《民權法》第七章。

日本經濟產業省利用巨量資料(BIG DATA)及人工智慧(AI)開發及測試新的經濟指標

  日本經濟產業省利用網絡積累巨量資料(BIG DATA)及人工智慧(AI)技術,應用民營企業相關資訊,開發和測試新經濟指標,分別於2017年7月19日及2018年1月8日公開該指標。為達到及早準確掌握經濟動向,對巨量資料等新資料之利用期待越來越高,政府部門也將利用巨量資料及人工智慧技術等方法,針對統計技術進行改革,。   新開發之指標有:1.SNS×AI商業信心指數(SNS×AI景況感指数):乃是透過人工智慧抽取關於商業信心的網路文章,並進行情緒(正/負)評估計算指數,期待有效地估計以每日為頻率之商業信心。2.SNS×AI礦工業生產預測指數(SNS×AI鉱工業生産予測指数):利用人工智慧選取有關工作和景氣之網路相關文件,結合「開放數據」之統計等技術,並利用人工智慧「機械學習」之手法,來預測「工業生產指數」。3.銷售點資訊管理系統(POS,point-of-sale)家電量販店銷售趨勢指標(POS家電量販店動向指標):透過收集具有銷售點資訊管理系統(POS)的家用電子大型專賣店的銷售資料,期待可以掌握每一日之「銷售趨勢」。   新的指數與既存統計指數,如景氣動向指數、中小企業信心指數、工業生產指數、商業動態統計等,其調查週期、公布頻率等,既存指數每月調查公布,新指數則進步至每日調查或每週公布等,在計算及呈現頻率上較既有更為精細。日本政府並設立「Big Data-STATS」網站,以實驗性質公佈上述經濟指標,並廣泛收納民眾意見以提高新指標的準確性。

2011年個人資料外洩事件與前年相比減少128件,總數為1551件-預測賠償金額比前年擴大1.5倍

  日本2011年個人資料外洩事件及事故的件數比前年減少為1551件,但洩漏的個人資料筆數卻超過前年一成以上,約有600萬筆個人資料外洩。從數字來看預估的賠償金額是超過1900億日幣。   日本網路資安協會(JNSA)與資訊安全大學研究所的原田研究室及廣松研究室共同針對報紙集網路媒體所報導的個人資料外洩相關事件及事故所進行的調查所做的結論。   新力集團旗下的海外公司雖然發生合計超過1億筆的大規模個人資料外洩的意外,但此一事故並無法明確判別是否屬於個人資料保護法的適用範圍,因此從今年的調查對象裡排除。   在2011年發生的資料外洩事件有1551件,比起前年的1679件減少128件,大約跟2009年所發生的個人資料外洩差不多水準。外洩的個人資料筆數總計約628萬4363筆,與前年相較約增加70萬筆。平均1件約洩漏4238筆個人資料。   將事故原因以件數為基礎來分析,可以發現「操作錯誤」佔全體的34.8%為第一位,其次是「管理過失」佔32%,再接下來是「遺失、忘記帶走」佔13.7%。但以筆數來看,值得注意的是「管理過失」佔37.7%最多,但「操作錯誤」就僅有佔2.3%的少數。   再以佔全體事件件數5%的「違法攜出」就佔了全體筆數的26.9%;在佔全體件數僅有1.2%的「違法存取」卻在筆數佔了20.9%,可以看到平均每一件的受害筆數有開始膨脹的傾向。   再者從發生外洩原因的儲存媒體來看,紙本佔了以件數計算的68.7%的大多數,以USB記憶體為首的外接式記憶體佔了10.1%;但以筆數計算的話,外接式記憶體佔了59.1%、網路佔了25.5%的不同的發生傾向。   從大規模意外來看,金融機關與保險業界是最值得注意,前10件裡佔了7件。從發生原因來看,「違法攜出」及「內部犯罪」所造成的事故10件中有4件,其次是「管理過失」。規模最大的是山陰合同銀行的受委託人將業務所需的165萬7131件個人資料攜出的事故。   依據2011年所發生的事件及事故的預估賠償額是1899億7379萬日幣。遠超過前年的1215億7600萬日幣。平均一起事件預估損害賠償金額有1億2810萬日幣,每人平均預估賠償金額是4萬8533日幣。

TOP