美國發明法(Leahy-Smith America Invents Act,AIA)第18條修正案之觀察

  美國國會於今年5月針對美國發明法(Leahy-Smith America Invents Act,AIA)第18條提出擴張性修法。美國發明法第18條係規範專利改革過渡期間涵蓋商業方法專利之複審程序(Transition Program for Cover Business Method Patents Review, CBM),並且定有落日條款,預計將在2020年9月16日失效。本次修正案研擬將落日條款刪除以外,將適用對象從原先適用於金融產品或服務(a financial product or service)之商業方法專利(Business Method Patents)修正為適用於企業、商品或服務(used in the practice, administration, or management of enterprise、product or service)之商業方法專利,此將擴張商業方法專利複審程序之適用範圍。

  奇異電子(GE Co.)、3M(3M Co.)、禮來(Lilly & Co.)、施樂(Xerox Corp.)等多家產業界知名公司於今年(2013)9月19日發出聯合信函反對美國國會此次針對美國發明法第18條的擴張性修法。信中表示本次修法將意味著數據處理專利(Data Processing Patents)等尖端的癌症治療方法到汽車安全系統等都可能包含在內,可提起專利侵權的範圍將擴大至難以界定的程度,再者刪除落日條款,會造成諸多不確定性與風險阻礙科技創新的持續投入。

  然而,產業界並非意見一致,諸如谷歌(Google Inc.)、臉書(Facebook Inc.)、沃爾瑪(Wal-Mart Stores Inc.)等知名公司則立場相左,早於今年7月即率先表示贊成,聲明此次修法提供創新者一個積極保護自身專利的具體手段。由此足見歐巴馬政府與立法者在專利法制改革中,必然要面對難以預測的產業效應和衝擊,從而增加其制度改革策略思考和制度設計的難度。

本文為「經濟部產業技術司科技專案成果」

相關連結
※ 美國發明法(Leahy-Smith America Invents Act,AIA)第18條修正案之觀察, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=6365&no=55&tp=1 (最後瀏覽日:2025/11/20)
引註此篇文章
你可能還會想看
英國將於西密德蘭郡大規模推行5G試驗計畫

  英國數位、文化、媒體暨體育部(Department for Digital, Culture Media & Sport, DCMS)於2018年3月公布5G測試平台及試驗計畫(5G Testbeds and Trials Programme)中之都市聯網計畫(Urban Connected Communities Project)政策文件,將於英國大規模推展5G試驗。同年9月4日,數位部部長宣佈其5G試驗團隊正與西密德蘭郡聯合管理局(the West Midlands Combined Authority, WMCA)及相關產業夥伴合作準備正式商業案例,預計將於2019年推行第一個計畫項目。    本項目內容側重於醫療及汽車業,包含: 1. 透過流暢的視訊方式進行遠距醫療諮詢(Outpatient appointment)或緊急醫療情況之諮詢,而該視頻之內容除可回放外,與家人及看護間並可進行共享查看,以提升醫療照護之效率與品質。 2. 「聯網救護車」:醫療輔助人員得於事故現場即時獲得專家建議,例如與顧問或臨床專家進行視訊。並於救護車內即能傳送患者之即時資訊至醫院,使患者抵達醫院時能進行快速且妥適處理。 3. 即時傳輸公共巴士上之閉路電視(CCTV)畫面,以便立即採取行動制止反社會行為(anti-social behaviour)。   計畫將可獲得高達5000萬英鎊之資金,並於柏明罕、考文垂以及伍爾弗漢普頓(Birmingham, Coventry and Wolverhampton)設立試驗中心執行相關計畫。

日本將數位廣告業者列入特定數位平台之透明性及公正性提升法適用對象

  日本於2022年7月5日閣議決定修正政令將數位廣告(デジタル広告)的大型數位平台(デジタルプラットフォーム)業者列入「特定數位平台之透明性及公正性提升法」(特定デジタルプラットフォームの透明性及び公正性の向上に関する法律)適用對象,修正政令於2022年7月8日正式公布,並預計自2022年8月1日開始施行。   日本於2020年5月27日通過特定數位平台之透明性及公正性提升法(以下簡稱本法),要求特定數位平台業者公開提供服務條件,主動積極採取因應措施並進行自我評估,以提升特定數位平台透明性與公正性,促進國民經濟健全發展。隨著數位平台重要度與日俱增,數位廣告的數位平台企業影響力亦逐漸擴大,甚至將對媒體事業收益結構帶來重大改變。日本於2021年6月18日閣議決定「2021經濟財政營運及改革基本方針」(経済財政運営と改革の基本方針2021)與「成長戰略實行計畫」(成長戦略実行計画),均提出須關注數位市場競爭環境,因應新時代統整數位廣告市場規則,將數位廣告的大型數位平台業者列入本法適用對象,整合數位平台透明性與公平性規則。   本次修正政令列入本法適用對象的數位廣告業者包含:一、日本國內營業額在1000億日圓以上的媒體整合型廣告數位平台。二、日本國內營業額在500億日圓以上的廣告仲介型數位平台。日本期望能藉由統整數位廣告市場規則,解決數位廣告市場的垂直整合問題,同時強化消費者隱私保護。

美國衛生及公共服務部提出策略草案,以緩解健康資訊科技對醫護人員所造成的負擔

  美國衛生及公共服務部(U.S. Department of Health and Human Services, HHS)依21世紀醫療法(21st Century Cures Act)於2018年11月28日公布由國家健康資訊技術協調辦公室(Office of the National Coordinator for Health Information Technology, ONC)與美國聯邦醫療保險和補助服務中心(Centers for Medicare & Medicaid Services, CMS)共同起草的「減輕使用健康資訊科技及電子健康紀錄所造成的管制與行政負擔之策略(Strategy on Reducing Regulatory and Administrative Burden Relating to the Use of Health IT and EHRs)」草案,以緩解健康資訊科技(Health Information Technology)於臨床使用的負擔。   雖然資通訊科技的進步促進許多產業的發展,卻在醫療產業造成應用上的問題,如臨床醫師會花費更多的時間、人力成本於登載電子健康紀錄,而壓縮與患者溝通的時間。為改善這些問題,此草案針對臨床紀錄建檔(Clinical Documentation)、健康資訊科技的可用性與使用者經驗(Health IT Usability and the User Experience)、電子健康紀錄報告(EHR Reporting)、及公共衛生報告(Public Health Reporting)四大議題提出相對應的策略及建議採用的措施。並以三個主要方向為討論主軸:降低臨床醫師紀錄患者健康資訊所耗費的人力時間成本、降低臨床醫師、醫院與健康照護機構(health care organizations)為達到報告規範標準而耗費的人力時間成本、及促進電子健康紀錄在使用上的功能性與直覺性(functionality and intuitiveness),以期能促進醫病溝通,並進一步完善健康照護環境。此草案在2019年1月28日前開放公眾提出建議,並預計於2019年年底公布最終版本。

通用人工智慧的透明揭露標準--歐盟通用人工智慧模型實踐準則「透明度 (Transparency)」章

通用人工智慧的透明揭露標準--歐盟通用人工智慧模型實踐準則「透明度 (Transparency)」章 資訊工業策進會科技法律研究所 2025年08月06日 歐盟人工智慧辦公室(The European AI Office,以下簡稱AIO) 於2025年7月10日提出《人工智慧法案》(AI Act, 以下簡稱AIA法案)關於通用型人工智慧實作的準則[1] (Code of Practice for General-Purpose AI Models,以下簡稱「GPAI實踐準則」),並於其中「透明度 (Transparency)」章節[2],針對歐盟AIA法案第53條第1項(a)、(b)款要求GPAI模型的提供者必須準備並提供給下游的系統整合者 (integrator) 或部署者 (deployer) 足夠的資訊的義務,提出模型文件(Model Documentation)標準與格式,協助GPAI模型提供者制定並更新。 壹、事件摘要 歐盟為確保GPAI模型提供者遵循其AI法案下的義務,並使AIO能夠評估選擇依賴本守則以展現其AI法案義務合規性的通用人工智慧模型提供者之合規情況,提出GPAI實踐準則。當GPAI模型提供者有意將其模型整合至其AI系統的提供者(以下稱「下游提供者」)及應向AIO提供相關資訊,其應依透明度章節要求措施(詳下述)提出符合內容、項目要求的模型文件,並予公開揭露且確保已記錄資訊的品質、安全性及完整性 (integrity)。 由於GPAI模型提供者在AI價值鏈 (AI value chain) 中具有特殊角色和責任,其所提供的模型可能構成一系列下游AI系統的基礎,這些系統通常由需要充分了解模型及其能力的下游提供者提供,以便將此類模型整合至其產品中並履行其AIA法案下的義務。而相關資訊的提供目的,同時也在於讓AIO及國家主管機關履行其AI法案職責,特別是高風險AI的評估。 AIO指出完整填寫與定期更新模型文件,是履行AIA法案第53條義務的關鍵步驟。GPAI模型提供者應建立適當的內部程序,確保資訊的準確性、時效性及安全性。模型文件所含資訊的相關變更,包括同一模型的更新版本,同時保留模型文件的先前版本,期間至模型投放市場後10年結束。 貳、重點說明 一、制定並更新模型文件(措施1.1) 透明度 (Transparency)章節提供模型文件的標準表格,做為GPAI實踐準則透明度章節的核心工具,協助GPAI模型提供者有系統性的整理並提供AIA法案所要求的各項資訊。表格設計考量了不同利害關係人的資訊需求,確保在保護商業機密的同時,滿足監管透明度的要求。 前揭記錄資訊依其應提供對象不同,各欄位已有標示區分該欄資訊係用於AI辦公室 (AIO)、國家主管機關 (NCAs) 或下游提供者 (DPs)者。適用於下游提供者的資訊,GPAI模型提供者應主動提供(公開揭露),其他則於被請求時始須提供(予AIO或NCAs)。 除基本的文件最後更新日期與版本資訊外,應提供的資訊分為八大項,內容應包括: (一)、一般資訊General information 1.模型提供者法律名稱(Legal name) 2.模型名稱(Model name):模型的唯一識別碼(例如 Llama 3.1-405B),包括模型集合的識別碼(如適用),以及模型文件涵蓋之相關模型公開版本的名稱清單。 3.模型真實性(Model authenticity):提供明確的資訊例如安全雜湊或URL端點,來幫助使用者確認這個模型的來源 (Provenance)、是否真實性未被更動 (Authenticity)。 4.首次發布日(Release date)與首次投放歐盟市場的日期(Union market release date)。 5.模型依賴(Model dependencies):若模型是對一個或多個先前投放市場的GPAI模型進行修改或微調的結果,須列出該等模型的名稱(及相關版本,如有多個版本投放市場)。 (二)、模型屬性(Model properties) 1.Model architecture 模型架構:模型架構的一般描述,例如轉換器架構 (transformer architecture)。 2.Design specifications of the model 模型設計規格:模型主要設計規格的一般描述,包括理由及所作假設。 3.輸出/入的模式與其最大值(maximum size):說明係文字、影像、音訊或視訊模式與其最大的輸出/入的大小。 4.模型總參數量(model size)與其範圍(Parameter range):提供模模型參數總數,記錄至少兩個有效數字,例如 7.3*10^10 參數,並勾選參數(大小)所在範圍的選項,例如:☐>1T。 (三)、發佈途徑與授權方式(Methods of distribution and licenses) 1.發佈途徑Distribution channels:列舉在歐盟市場上使用模型的採用法,包括API、軟體套裝或開源倉庫。 2.授權條款License:附上授權條款鏈結或在要求時提供副本;說明授權類型如: 開放授權、限制性授權、專有授權;列出尚有提供哪些相關資源(如訓練資料、程式碼)與其存取方式、使用授權。 (四)、模型的使用(Use) 1.可接受的使用政策Acceptable Use Policy:附上可接受使用政策連結或副本或註明無政策。 2.預期用途或限制用途Intended uses:例如生產力提升、翻譯、創意內容生成、資料分析、資料視覺化、程式設計協助、排程、客戶支援、各種自然語言任務等或限制及/或禁止的用途。 3.可整合AI系統之類型Type and nature of AI systems:例如可能包括自主系統、對話助理、決策支援系統、創意AI系統、預測系統、網路安全、監控或人機協作。 4.模型整合技術方式Technical means for integration:例如使用說明、基礎設施、工具)的一般描述。 5.所需軟硬體資源Required hardware與software:使用模型所需任何軟硬體(包括版本)的描述,若不適用則填入「NA」。 (五)、訓練過程(Training process) 1.訓練過程設計規格(Design specifications of the training process):訓練過程所涉主要步驟或階段的一般描述,包括訓練方法論及技術、主要設計選擇、所作假設及模型設計最佳化目標,以及不同參數的相關性(如適用)。例如:「模型在人類偏好資料集上進行10個輪次的後訓練,以使模型與人類價值觀一致,並使其在回應使用者提示時更有用」。 2.設計決策理由(Decision rationale):如何及為何在模型訓練中做出關鍵設計選擇的描述。 (六)、用於訓練、測試及驗證的資料資訊(Information on the data used for training, testing, and validation) 1.資料類型樣態Data type/modality:勾選樣態包括文字、影像、音訊、視訊或說明有其他模態。 2.資料來源Data provenance:勾選來源包括網路爬蟲、從第三方取得的私人非公開資料集、使用者資料、公開資料集、透過其他方式收集的資料、非公開合成(Synthetic )資料等。 3.資料取得與選取方式(How data was obtained):取得及選擇訓練、測試及驗證資料使用方法的描述,包括用於註釋資料的方法及資源,以及用於生成合成資料的模型及方法。從第三方取得的資料,如果權利取得方式未在訓練資料公開摘要中披露,應描述該方式。 4.資料點數量Number of data points:說明訓練、測試及驗證資料的大小(資料點數量),連同資料點單位的定義(例如代幣或文件、影像、視訊小時或幀)。 5.資料範疇與特性(Scope and characteristics):指訓練、測試及驗證資料範圍及主要特徵的一般描述,如領域(例如醫療保健、科學、法律等)、地理(例如全球、限於特定區域等)、語言、模式涵蓋範圍。 6.資料清理處理方法(Data curation methodologies):指將獲取的資料轉換為模型訓練、測試及驗證資料所涉及的資料處理一般描述,如清理(例如過濾不相關內容如廣告)、資料擴增。 7.不當資料檢測措施(Measures for unsuitability):在資料獲取或處理中實施的任何方法描述(如有),以偵測考慮模型預期用途的不適當資料源,包括但不限於非法內容、兒童性虐待材料 (CSAM)、非同意親密影像 (NCII),以及導致非法處理的個人資料。 8.可識別偏誤檢測措施(Measures to detect identifiable biases):描述所採取的偵測與矯正訓練資料存在偏誤的方法。 (七)、訓練期間的計算資源(Computational resources (during training)) 1.訓練時間(Training time):所測量期間及其時間的描述。 2.訓練使用的計算量(Amount of computation used for training):說明訓練使用的測量或估計計算量,以運算表示並記錄至其數量級(例如 10^24 浮點運算)。 3.測量方法論(Measurement methodology):描述用於測量或估計訓練使用計算量的方法。 (八)、訓練及推論的能源消耗(Energy consumption (during training and inference)) 1.訓練耗能(Amount of energy used for training)及其計量方法:說明訓練使用的測量或估計能源量,以百萬瓦時表示(例如 1.0x10^2 百萬瓦時)。若模型能源消耗未知,可基於所使用計算資源的資訊估計能源消耗。若因缺乏計算或硬體提供者的關鍵資訊而無法估計訓練使用能源量,提供者應披露所缺乏的資訊類型。 2.推論運算耗能的計算基準 (Benchmarked amount of computation used for inference1)及其方法:以浮點運算表示方式(例如 5.1x10^17 浮點運算)說明推論運算的基準計算量,並提供計算任務描述(例如生成100000個代幣Token)及用於測量或估計的硬體(例如 64個Nvidia A100)。 二、提供GPAI模型相關資訊(措施1.2) 通用人工智慧模型投放市場時,應透過其網站或若無網站則透過其他適當方式,公開揭露聯絡資訊,供AIO及下游提供者請求取得模型文件中所含的相關資訊或其他必要資訊,以其最新形式提供所請求的資訊。 於下游提供者請求時,GPAI模型提供者應向下游提供者提供最新模型文件中適用於下游提供者的資訊,在不影響智慧財產權及機密商業的前提下,對使其充分了解GPAI模型的能力及限制,並使該等下游提供者能夠遵循其AIA法案義務。資訊應在合理時間內提供,除特殊情況外不得超過收到請求後14日。且該資訊的部分內容可能也需要以摘要形式,作為GPAI模型提供者根據AIA法案第53條第1項(d)款必須公開提供的訓練內容摘要 (training content summary) 的一部分。 三、確保資訊品質、完整性及安全性(措施1.3) GPAI模型提供者應確保資訊的品質及完整性獲得控制,並保留控制證據以供證明遵循AIA法案,且防止證據被非預期的變更 (unintended alterations)。在制定、更新及控制資訊及記錄的品質與安全性時,宜遵循既定協議 (established protocols) 及技術標準 (technical standards)。 參、事件評析 一、所要求之資訊完整、格式標準清楚 歐盟AGPAI實踐準則」的「透明度 (Transparency)」提供模型文件的標準表格,做為GPAI實踐準則透明度章節的核心工具,從名稱、屬性、功能等最基本的模型資料,到所需軟硬體、使用政策、散佈管道、訓練資料來源、演算法設計,甚至運算與能源消秏等,構面完整且均有欄位說明,而且部分欄位直接提供選項供勾選,對於GPAI模型提供者提供了簡明容易的AIA法案資訊要求合規做法。 二、表格設計考量不同利害關係人的資訊需求 GPAI實踐準則透明度章節雖然主要目的是為GPAI模型提供者對由需要充分了解模型及其能力的下游提供者提供資訊,以便其在產品履行AIA法案下的義務。但相關資訊的提供目的,同時也在於讓AIO及國家主管機關履行其AI法案職責,特別是高風險AI的評估。因此,表格的資訊標示區分該欄資訊係用於AI辦公室 (AIO)、國家主管機關 (NCAs) 或下游提供者 (DPs)者,例如模型的訓練、資料清理處理方法、不當內容的檢測、測試及驗證的資料來源、訓練與運算的能秏、就多屬AIO、NCAs有要求時始須提供的資料,無須主動公開也兼顧及GPAI模型提供者的商業機密保護。 三、配套要求公開並確保資訊品質 該準則除要求GPAI模型提供者應記錄模型文件,並要求於網站等適當地,公開提供下游提供者請求的最新的資訊。而且應在不影響智慧財產權及機密商業的前提下,提供其他對使其充分了解GPAI模型的能力及限制的資訊。同時,為確保資訊的品質及完整性獲得控制,該準則亦明示不僅應落實且應保留證據,以防止資訊被非預期的變更。 四、以透明機制落實我國AI基本法草案的原則 我國日前已由國科會公告人工智慧基本草案,草案揭示「隱私保護與資料治理」、「妥善保護個人資料隱私」、「資安與安全 」、「透明與可解釋 」、「公平與不歧視」、「問責」原則。GPAI實踐準則透明度章節,已提供一個重要的啟示—透過AI風險評測機制,即可推動GPAI模型資訊的揭露,對相關資訊包括訓練資料來源、不當內容防止採取做一定程度的揭露要求。 透過相關資訊揭露的要求,即可一定程度促使AI開發提供者評估認知風險,同時採取降低訓練資料、生成結果侵權或不正確的措施。即便在各領域作用法尚未能建立落實配套要求,透過通過評測的正面效益,運用AI風險評測機制的資訊提供要求,前揭草案揭示的隱私、著作、安全、問責等原則,將可以立即可獲得一定程度的實質落實,緩解各界對於AI侵權、安全性的疑慮。 本文為資策會科法所創智中心完成之著作,非經同意或授權,不得為轉載、公開播送、公開傳輸、改作或重製等利用行為。 本文同步刊登於TIPS網站(https://www.tips.org.tw) [1]The European AI Office, The General-Purpose AI Code of Practice, https://digital-strategy.ec.europa.eu/en/policies/contents-code-gpai 。(最後閱覽日:2025/07/30) [2]The European AI Office, Code of Practice for General-Purpose AI Models–Transparency Chapter, https://ec.europa.eu/newsroom/dae/redirection/document/118120 。(最後閱覽日:2025/07/30)

TOP