美國眾議院於2013/10/22提出法案(Sensible Oversight for Technology which Advances Regulatory Efficiency Act of 2013,簡稱Software Act,HR3303),擬限制食品藥物管理局 (Food and Drug Administration,FDA)在與健康醫療有關軟體制訂規範的權限。
根據美國聯邦法典第21編第301條以下(21 U.S.C. § 301)規定,FDA對醫療器材擁有法定職權進行規範。FDA近來亦開始嘗試對醫療軟體APP制訂規範,包括附有生物識別裝置(如血壓監視器和照相機)、讓消費者可以蒐集資料、供醫生可遠距離進行部分檢測行為的行動設備。這項法案的支持者以為,FDA此舉將阻礙醫療創新,故擬透過Software Act界定FDA的規管權限。
這項法案主要增加了3個定義:醫療軟體(medical software)、臨床軟體(clinical software)和健康軟體(health software)。醫療軟體仍在FDA的管轄範圍內,但其他2類則否。惟本法案只確立FDA無權對資料蒐集類軟體進行規範,但對此類軟體得使用的範圍、或是否需另授與執照等議題並沒有著墨。提案者以為,後續應由總統和國會應共同努力,對臨床軟體和健康軟體制訂和頒佈立法,建立以風險為基礎的管制架構,降低管制負擔,促進病患安全與醫療創新。
所謂醫療軟體,指涉及改變身體(changing the body)的軟體。包括意圖透過市場銷售、供消費者使用,直接改變人體結構或功能的軟體;或,意圖透過市場銷售、供消費者使用,以提供臨床醫療行為建議的藥物、器材或治療疾病的程序;或其他不需要健康照護提供者參與的情境,但實施後會直接改變人體結構或功能的藥物、器材或程序。
僅從人體蒐集資料者,被歸類為臨床軟體(由醫療院所、健康照護提供者裝設)或健康軟體(由民眾自為)。兩者的區別,主要在由誰提供並裝設。
所謂臨床軟體,是醫療院所或健康照護提供者在提供服務時使用,提供臨床決策支援目的之軟體,包括抓取、分析、改變或呈現病患或民眾臨床數據相關的硬體和流程,但不會直接改變人體結構或任何功能。
根據Research2Guidance於2013年2月發表的調查報告(Mobile Health Market Report 2013-2017),目前在APPLE的APP Store上已有97,000個行動健康類的APP程式,有3百萬個免費、30萬個付費下載使用者。15%的APP是專門設計給健康照護提供者;與去年相比,已有超過6成的醫生使用平板提供服務。預測消費者使用智慧型手機上的醫療APP的數量,在2015年將達5億。這個法案的出現,外界以為,提供了科技創新者較明確的規範指引,允許醫療的進步和創新。
歐洲議會民眾權益委員會( the European Parliament's civil liberties committee)於2005年11月25日以33票對8票通過新的指令草案,要求電話與網路的通聯紀錄(但不包含內容紀錄)均需被保留6個月到12個月。目前此草案已送交部長理事會(Council of Ministers)審議中。 為避免保留之通聯紀錄遭到濫用,民眾權益委員會要求僅法官可以調閱通聯紀錄,且僅限於調查重大犯罪(例如恐怖份子或是組織犯罪)時始可調閱。但創作及媒體企業協會( the Creative and Meida Business Alliance, CMBA)則希望歐盟能放寬通聯紀錄調閱之限制,允許進行所有犯罪之調查時,特別是在查緝盜版犯罪之情形,能調閱通聯紀錄。 對於業者因配合保留通聯紀錄而增加的額外負擔,則可能透過轉嫁給消費者或是透過整府補貼的方式解決。
美國最高法院判決:向境外供應侵權產品若為單一元件不構成侵權行為美國最高法院於2月22日針對Life Technologies Corp. v. Promega Corp.一案作出判決,對於向美國境外供應多元件侵權產品的其中單一元件,並不構成35 U.S.C. 271(f)(以下稱271(f))的侵權責任。 美國醫療生技公司Promega控告同業LifeTech侵害其專利,指稱LifeTech所製造的基因檢測套件中之組裝元件中之DNA聚合酶元件(Taq polymerase)是由美國製造,運送到英國組裝後,再販售至世界各地。Promega認為LifeTech將單一元件輸出至英國組裝的行為,已違反271(f)(1)中的「境外組裝」規定。 該案爭點之一在271(f)(1)之詮釋及適用爭議:「一當事人未經授權自美國向境外供應專利中全部或相當部份("all or a substantial portion")之元件,若元件尚未組合,而在美國境外將主要部分加以組合,如同其在美國境內將該元件組合,應視為侵權者而負其責任。」 地院認為271(f)(1)中的"all or a substantial portion"不符合本案只提供單一元件之情形,判定侵權不成立。不過CAFC認為地院有不當解釋271(f)(1),故認定LifeTech所販售的聚合酶元件符合271(f)(1)規定的"substantial portion"應解釋為"重要的部分",故推翻一審判決,判定侵權成立。 最高法院解讀271(f)(1)時,將其中的"substantial portion"解釋為"大量"或"多的",因此認定所述"單一元件"並不構成271(f)(1)中的"substantial portion",原因為單一元件並非法條所指的"多量"。 最終,最高法院認為,本案被告僅供應"單一元件"在境外組合,因此並不構成35U.S.C.271(f)(1)法條所定義之侵權行為。 「本文同步刊登於TIPS網站(https://www.tips.org.tw )」
通用人工智慧的透明揭露標準--歐盟通用人工智慧模型實踐準則「透明度 (Transparency)」章通用人工智慧的透明揭露標準--歐盟通用人工智慧模型實踐準則「透明度 (Transparency)」章 資訊工業策進會科技法律研究所 2025年08月06日 歐盟人工智慧辦公室(The European AI Office,以下簡稱AIO) 於2025年7月10日提出《人工智慧法案》(AI Act, 以下簡稱AIA法案)關於通用型人工智慧實作的準則[1] (Code of Practice for General-Purpose AI Models,以下簡稱「GPAI實踐準則」),並於其中「透明度 (Transparency)」章節[2],針對歐盟AIA法案第53條第1項(a)、(b)款要求GPAI模型的提供者必須準備並提供給下游的系統整合者 (integrator) 或部署者 (deployer) 足夠的資訊的義務,提出模型文件(Model Documentation)標準與格式,協助GPAI模型提供者制定並更新。 壹、事件摘要 歐盟為確保GPAI模型提供者遵循其AI法案下的義務,並使AIO能夠評估選擇依賴本守則以展現其AI法案義務合規性的通用人工智慧模型提供者之合規情況,提出GPAI實踐準則。當GPAI模型提供者有意將其模型整合至其AI系統的提供者(以下稱「下游提供者」)及應向AIO提供相關資訊,其應依透明度章節要求措施(詳下述)提出符合內容、項目要求的模型文件,並予公開揭露且確保已記錄資訊的品質、安全性及完整性 (integrity)。 由於GPAI模型提供者在AI價值鏈 (AI value chain) 中具有特殊角色和責任,其所提供的模型可能構成一系列下游AI系統的基礎,這些系統通常由需要充分了解模型及其能力的下游提供者提供,以便將此類模型整合至其產品中並履行其AIA法案下的義務。而相關資訊的提供目的,同時也在於讓AIO及國家主管機關履行其AI法案職責,特別是高風險AI的評估。 AIO指出完整填寫與定期更新模型文件,是履行AIA法案第53條義務的關鍵步驟。GPAI模型提供者應建立適當的內部程序,確保資訊的準確性、時效性及安全性。模型文件所含資訊的相關變更,包括同一模型的更新版本,同時保留模型文件的先前版本,期間至模型投放市場後10年結束。 貳、重點說明 一、制定並更新模型文件(措施1.1) 透明度 (Transparency)章節提供模型文件的標準表格,做為GPAI實踐準則透明度章節的核心工具,協助GPAI模型提供者有系統性的整理並提供AIA法案所要求的各項資訊。表格設計考量了不同利害關係人的資訊需求,確保在保護商業機密的同時,滿足監管透明度的要求。 前揭記錄資訊依其應提供對象不同,各欄位已有標示區分該欄資訊係用於AI辦公室 (AIO)、國家主管機關 (NCAs) 或下游提供者 (DPs)者。適用於下游提供者的資訊,GPAI模型提供者應主動提供(公開揭露),其他則於被請求時始須提供(予AIO或NCAs)。 除基本的文件最後更新日期與版本資訊外,應提供的資訊分為八大項,內容應包括: (一)、一般資訊General information 1.模型提供者法律名稱(Legal name) 2.模型名稱(Model name):模型的唯一識別碼(例如 Llama 3.1-405B),包括模型集合的識別碼(如適用),以及模型文件涵蓋之相關模型公開版本的名稱清單。 3.模型真實性(Model authenticity):提供明確的資訊例如安全雜湊或URL端點,來幫助使用者確認這個模型的來源 (Provenance)、是否真實性未被更動 (Authenticity)。 4.首次發布日(Release date)與首次投放歐盟市場的日期(Union market release date)。 5.模型依賴(Model dependencies):若模型是對一個或多個先前投放市場的GPAI模型進行修改或微調的結果,須列出該等模型的名稱(及相關版本,如有多個版本投放市場)。 (二)、模型屬性(Model properties) 1.Model architecture 模型架構:模型架構的一般描述,例如轉換器架構 (transformer architecture)。 2.Design specifications of the model 模型設計規格:模型主要設計規格的一般描述,包括理由及所作假設。 3.輸出/入的模式與其最大值(maximum size):說明係文字、影像、音訊或視訊模式與其最大的輸出/入的大小。 4.模型總參數量(model size)與其範圍(Parameter range):提供模模型參數總數,記錄至少兩個有效數字,例如 7.3*10^10 參數,並勾選參數(大小)所在範圍的選項,例如:☐>1T。 (三)、發佈途徑與授權方式(Methods of distribution and licenses) 1.發佈途徑Distribution channels:列舉在歐盟市場上使用模型的採用法,包括API、軟體套裝或開源倉庫。 2.授權條款License:附上授權條款鏈結或在要求時提供副本;說明授權類型如: 開放授權、限制性授權、專有授權;列出尚有提供哪些相關資源(如訓練資料、程式碼)與其存取方式、使用授權。 (四)、模型的使用(Use) 1.可接受的使用政策Acceptable Use Policy:附上可接受使用政策連結或副本或註明無政策。 2.預期用途或限制用途Intended uses:例如生產力提升、翻譯、創意內容生成、資料分析、資料視覺化、程式設計協助、排程、客戶支援、各種自然語言任務等或限制及/或禁止的用途。 3.可整合AI系統之類型Type and nature of AI systems:例如可能包括自主系統、對話助理、決策支援系統、創意AI系統、預測系統、網路安全、監控或人機協作。 4.模型整合技術方式Technical means for integration:例如使用說明、基礎設施、工具)的一般描述。 5.所需軟硬體資源Required hardware與software:使用模型所需任何軟硬體(包括版本)的描述,若不適用則填入「NA」。 (五)、訓練過程(Training process) 1.訓練過程設計規格(Design specifications of the training process):訓練過程所涉主要步驟或階段的一般描述,包括訓練方法論及技術、主要設計選擇、所作假設及模型設計最佳化目標,以及不同參數的相關性(如適用)。例如:「模型在人類偏好資料集上進行10個輪次的後訓練,以使模型與人類價值觀一致,並使其在回應使用者提示時更有用」。 2.設計決策理由(Decision rationale):如何及為何在模型訓練中做出關鍵設計選擇的描述。 (六)、用於訓練、測試及驗證的資料資訊(Information on the data used for training, testing, and validation) 1.資料類型樣態Data type/modality:勾選樣態包括文字、影像、音訊、視訊或說明有其他模態。 2.資料來源Data provenance:勾選來源包括網路爬蟲、從第三方取得的私人非公開資料集、使用者資料、公開資料集、透過其他方式收集的資料、非公開合成(Synthetic )資料等。 3.資料取得與選取方式(How data was obtained):取得及選擇訓練、測試及驗證資料使用方法的描述,包括用於註釋資料的方法及資源,以及用於生成合成資料的模型及方法。從第三方取得的資料,如果權利取得方式未在訓練資料公開摘要中披露,應描述該方式。 4.資料點數量Number of data points:說明訓練、測試及驗證資料的大小(資料點數量),連同資料點單位的定義(例如代幣或文件、影像、視訊小時或幀)。 5.資料範疇與特性(Scope and characteristics):指訓練、測試及驗證資料範圍及主要特徵的一般描述,如領域(例如醫療保健、科學、法律等)、地理(例如全球、限於特定區域等)、語言、模式涵蓋範圍。 6.資料清理處理方法(Data curation methodologies):指將獲取的資料轉換為模型訓練、測試及驗證資料所涉及的資料處理一般描述,如清理(例如過濾不相關內容如廣告)、資料擴增。 7.不當資料檢測措施(Measures for unsuitability):在資料獲取或處理中實施的任何方法描述(如有),以偵測考慮模型預期用途的不適當資料源,包括但不限於非法內容、兒童性虐待材料 (CSAM)、非同意親密影像 (NCII),以及導致非法處理的個人資料。 8.可識別偏誤檢測措施(Measures to detect identifiable biases):描述所採取的偵測與矯正訓練資料存在偏誤的方法。 (七)、訓練期間的計算資源(Computational resources (during training)) 1.訓練時間(Training time):所測量期間及其時間的描述。 2.訓練使用的計算量(Amount of computation used for training):說明訓練使用的測量或估計計算量,以運算表示並記錄至其數量級(例如 10^24 浮點運算)。 3.測量方法論(Measurement methodology):描述用於測量或估計訓練使用計算量的方法。 (八)、訓練及推論的能源消耗(Energy consumption (during training and inference)) 1.訓練耗能(Amount of energy used for training)及其計量方法:說明訓練使用的測量或估計能源量,以百萬瓦時表示(例如 1.0x10^2 百萬瓦時)。若模型能源消耗未知,可基於所使用計算資源的資訊估計能源消耗。若因缺乏計算或硬體提供者的關鍵資訊而無法估計訓練使用能源量,提供者應披露所缺乏的資訊類型。 2.推論運算耗能的計算基準 (Benchmarked amount of computation used for inference1)及其方法:以浮點運算表示方式(例如 5.1x10^17 浮點運算)說明推論運算的基準計算量,並提供計算任務描述(例如生成100000個代幣Token)及用於測量或估計的硬體(例如 64個Nvidia A100)。 二、提供GPAI模型相關資訊(措施1.2) 通用人工智慧模型投放市場時,應透過其網站或若無網站則透過其他適當方式,公開揭露聯絡資訊,供AIO及下游提供者請求取得模型文件中所含的相關資訊或其他必要資訊,以其最新形式提供所請求的資訊。 於下游提供者請求時,GPAI模型提供者應向下游提供者提供最新模型文件中適用於下游提供者的資訊,在不影響智慧財產權及機密商業的前提下,對使其充分了解GPAI模型的能力及限制,並使該等下游提供者能夠遵循其AIA法案義務。資訊應在合理時間內提供,除特殊情況外不得超過收到請求後14日。且該資訊的部分內容可能也需要以摘要形式,作為GPAI模型提供者根據AIA法案第53條第1項(d)款必須公開提供的訓練內容摘要 (training content summary) 的一部分。 三、確保資訊品質、完整性及安全性(措施1.3) GPAI模型提供者應確保資訊的品質及完整性獲得控制,並保留控制證據以供證明遵循AIA法案,且防止證據被非預期的變更 (unintended alterations)。在制定、更新及控制資訊及記錄的品質與安全性時,宜遵循既定協議 (established protocols) 及技術標準 (technical standards)。 參、事件評析 一、所要求之資訊完整、格式標準清楚 歐盟AGPAI實踐準則」的「透明度 (Transparency)」提供模型文件的標準表格,做為GPAI實踐準則透明度章節的核心工具,從名稱、屬性、功能等最基本的模型資料,到所需軟硬體、使用政策、散佈管道、訓練資料來源、演算法設計,甚至運算與能源消秏等,構面完整且均有欄位說明,而且部分欄位直接提供選項供勾選,對於GPAI模型提供者提供了簡明容易的AIA法案資訊要求合規做法。 二、表格設計考量不同利害關係人的資訊需求 GPAI實踐準則透明度章節雖然主要目的是為GPAI模型提供者對由需要充分了解模型及其能力的下游提供者提供資訊,以便其在產品履行AIA法案下的義務。但相關資訊的提供目的,同時也在於讓AIO及國家主管機關履行其AI法案職責,特別是高風險AI的評估。因此,表格的資訊標示區分該欄資訊係用於AI辦公室 (AIO)、國家主管機關 (NCAs) 或下游提供者 (DPs)者,例如模型的訓練、資料清理處理方法、不當內容的檢測、測試及驗證的資料來源、訓練與運算的能秏、就多屬AIO、NCAs有要求時始須提供的資料,無須主動公開也兼顧及GPAI模型提供者的商業機密保護。 三、配套要求公開並確保資訊品質 該準則除要求GPAI模型提供者應記錄模型文件,並要求於網站等適當地,公開提供下游提供者請求的最新的資訊。而且應在不影響智慧財產權及機密商業的前提下,提供其他對使其充分了解GPAI模型的能力及限制的資訊。同時,為確保資訊的品質及完整性獲得控制,該準則亦明示不僅應落實且應保留證據,以防止資訊被非預期的變更。 四、以透明機制落實我國AI基本法草案的原則 我國日前已由國科會公告人工智慧基本草案,草案揭示「隱私保護與資料治理」、「妥善保護個人資料隱私」、「資安與安全 」、「透明與可解釋 」、「公平與不歧視」、「問責」原則。GPAI實踐準則透明度章節,已提供一個重要的啟示—透過AI風險評測機制,即可推動GPAI模型資訊的揭露,對相關資訊包括訓練資料來源、不當內容防止採取做一定程度的揭露要求。 透過相關資訊揭露的要求,即可一定程度促使AI開發提供者評估認知風險,同時採取降低訓練資料、生成結果侵權或不正確的措施。即便在各領域作用法尚未能建立落實配套要求,透過通過評測的正面效益,運用AI風險評測機制的資訊提供要求,前揭草案揭示的隱私、著作、安全、問責等原則,將可以立即可獲得一定程度的實質落實,緩解各界對於AI侵權、安全性的疑慮。 本文為資策會科法所創智中心完成之著作,非經同意或授權,不得為轉載、公開播送、公開傳輸、改作或重製等利用行為。 本文同步刊登於TIPS網站(https://www.tips.org.tw) [1]The European AI Office, The General-Purpose AI Code of Practice, https://digital-strategy.ec.europa.eu/en/policies/contents-code-gpai 。(最後閱覽日:2025/07/30) [2]The European AI Office, Code of Practice for General-Purpose AI Models–Transparency Chapter, https://ec.europa.eu/newsroom/dae/redirection/document/118120 。(最後閱覽日:2025/07/30)
必載規定修法動態與爭點必載規定修法動態與爭點 科技法律研究所 2012年4月9日 壹、修法動態 我國無線電視數位化後,頻道大幅增加,必載義務規定將影響有線電視系統的頻道安排與營運規劃,依照最新黨團協商結論,有線廣播電視法修草第33條第1至3項規定:「系統經營者應同時轉播依公共電視法設立之公共電視之節目及廣告,不得變更其形式及內容,並應列為基本頻道。但經中央主管機關許可者,不在此限。(第一項)系統經營者為前項轉播,不構成侵害著作權,免付費用,亦不得向訂戶收取任何費用。(第二項)系統經營者應同時轉播民營無線電視事業所指定之一個頻道節目及廣告,不得變更其形式及內容,並應列為基本頻道。但法律另有規定或經中央主管機關許可者,不在此限。(第三項)」同草案第36條第1項則規定:「系統經營者播送之頻道節目及廣告,應依著作權法或其他相關法規取得合法授權。」就上開兩條文做體系觀察,可得出有線電視雖對民營無線電視台所指定之一個頻道負必載義務,但在授權協商未完成前,可予以先行下架、拒絕轉播。但無線電視業者卻反對,主張「數位無線頻道全部必載、且無須付費」。 貳、論點研析與本文建議 一、應注意國際公約之遵守 我國必載規範最早見於1998年著作權法第56條之1第2項:「有線電視之系統經營者得提供基本頻道,同時轉播依法設立無線電視臺播送之著作,不得變更其內容。」使必載不須經著作財產權人同意,屬免費轉播,與伯恩公約第9條第2項及TRIPS第13條有關合理使用之規定不符,引起其他國家關切,而於2003年修正時刪除。惟同樣的規定仍然存續於有廣法中,相背國際公約問題未獲解決。無線電視頻道內所有節目,須向節目原始著作權利人取得授權。若規定有線電視業者須必載所有無線電視頻道,卻不構成著作權之侵害,將連帶使得無線電視業者無須向節目原始著作權利人取得於有線電視系統播送之授權,損及節目原始權利人之利益。 二、有線電視業者之頻道空間與「基本頻道空間」仍具有限性,立法不宜過度限制其權利,仍應以必載一個頻道為宜 從美國的法制經驗觀之,確保資訊多樣性、大眾免費收視之利益與促進市場競爭三項實質政府利益,並未因無線電視數位化而消失,數位必載仍有需要,只是全部必載可能構成多頻道平臺業者逾越必要程度的負擔。故系統業者僅須負擔必載無線電視業者自選群播中一個頻道串流的義務。我國目前有線電視系統未完全數位化,若全部必載民營無線電視共12個數位頻道,且列為頻道空間有限且訂閱戶最多的基本頻道,將導致有線電視業者獲利減損,恐過度限制有線電視業者的廣電與財產自由。我國無線電視已極趨弱勢,必載的確可確保無線電視業者的廣告收入,進而維持經營以保資訊多樣性,仍有必要繼續採行必載規則,惟必載頻道應僅由無線電視業者選擇其一可謂足夠。 三、我國民營無線電視台不屬非商業無線電視台,應輔導其回歸商業競爭,充實數位無線電視臺之動能 非商業無線電視台主要係補充商業電視因追求收視率與廣告收入,所造成特定資訊缺乏而設。商業無線電視台的全部必載恐對多頻道平臺業者投入於商業競爭上之努力,造成搭便車之效果,進而減損無線電視業者自身技術創新與節目開發之誘因。適切輔導無線電視業者競爭閱聽眾之眼球,如英國之共同傳輸的數位無線電視平臺,才能使無線電視業者更有效利用具高度公益性的無線頻譜。 四、無線電視業者間對必載規範與定位時有內部爭議,應仿照美國法制,設計可符合不同業者需求之「必載/再傳輸同意」選擇權框架 法研議修正之初,無線電視業者內部即有不同意見與需求,有意欲與有線電視業者進行載送之商業協商者,亦有傾向免付費必載者。若完整引進美國法制的精神,由無線電視業者自行選擇必載或行商業協商載送,不但可滿足當前不同無線電視業者間的歧異;亦因法制具有彈性,而有不因業者商業上成功與失敗之變化而須頻繁修法之利。