美國眾議院於2013/10/22提出法案(Sensible Oversight for Technology which Advances Regulatory Efficiency Act of 2013,簡稱Software Act,HR3303),擬限制食品藥物管理局 (Food and Drug Administration,FDA)在與健康醫療有關軟體制訂規範的權限。
根據美國聯邦法典第21編第301條以下(21 U.S.C. § 301)規定,FDA對醫療器材擁有法定職權進行規範。FDA近來亦開始嘗試對醫療軟體APP制訂規範,包括附有生物識別裝置(如血壓監視器和照相機)、讓消費者可以蒐集資料、供醫生可遠距離進行部分檢測行為的行動設備。這項法案的支持者以為,FDA此舉將阻礙醫療創新,故擬透過Software Act界定FDA的規管權限。
這項法案主要增加了3個定義:醫療軟體(medical software)、臨床軟體(clinical software)和健康軟體(health software)。醫療軟體仍在FDA的管轄範圍內,但其他2類則否。惟本法案只確立FDA無權對資料蒐集類軟體進行規範,但對此類軟體得使用的範圍、或是否需另授與執照等議題並沒有著墨。提案者以為,後續應由總統和國會應共同努力,對臨床軟體和健康軟體制訂和頒佈立法,建立以風險為基礎的管制架構,降低管制負擔,促進病患安全與醫療創新。
所謂醫療軟體,指涉及改變身體(changing the body)的軟體。包括意圖透過市場銷售、供消費者使用,直接改變人體結構或功能的軟體;或,意圖透過市場銷售、供消費者使用,以提供臨床醫療行為建議的藥物、器材或治療疾病的程序;或其他不需要健康照護提供者參與的情境,但實施後會直接改變人體結構或功能的藥物、器材或程序。
僅從人體蒐集資料者,被歸類為臨床軟體(由醫療院所、健康照護提供者裝設)或健康軟體(由民眾自為)。兩者的區別,主要在由誰提供並裝設。
所謂臨床軟體,是醫療院所或健康照護提供者在提供服務時使用,提供臨床決策支援目的之軟體,包括抓取、分析、改變或呈現病患或民眾臨床數據相關的硬體和流程,但不會直接改變人體結構或任何功能。
根據Research2Guidance於2013年2月發表的調查報告(Mobile Health Market Report 2013-2017),目前在APPLE的APP Store上已有97,000個行動健康類的APP程式,有3百萬個免費、30萬個付費下載使用者。15%的APP是專門設計給健康照護提供者;與去年相比,已有超過6成的醫生使用平板提供服務。預測消費者使用智慧型手機上的醫療APP的數量,在2015年將達5億。這個法案的出現,外界以為,提供了科技創新者較明確的規範指引,允許醫療的進步和創新。
世界衛生組織(World Health Organization, WHO)於2023年10月19日發布「人工智慧於健康領域之監管考量因素」(Regulatory considerations on artificial intelligence for health)文件,旨在協助各國有效監管健康領域之人工智慧,發揮其潛力同時最大限度地降低風險。本文件以下列六個領域概述健康人工智慧之監管考量因素: (1)文件化與透明度(Documentation and transparency) 開發者應預先規範(pre-specifying)以及明確記錄人工智慧系統(以下簡稱AI系統)之預期醫療目的與開發過程,如AI系統所欲解決之問題,以及資料集之選擇與利用、參考標準、參數、指標、於各開發階段與原始計畫之偏離及更新等事項,並建議以基於風險之方法(Risk-based approach),根據重要性之比例決定文件化之程度、以及AI系統之開發與確效紀錄之保持。 (2)風險管理與AI系統開發生命週期方法(Risk management and AI systems development lifecycle approaches) 開發者應在AI系統生命之所有階段,考慮整體產品生命週期方法(total product lifecycle approach),包括上市前開發管理、上市後監督與變更管理。此外,須考慮採用風險管理方法(risk management approach)來解決與AI系統相關之風險,如網路安全威脅與漏洞(vulnerabilities)、擬合不足(underfitting)、演算法偏差等。 (3)預期用途、分析及臨床確效(Intended use, and analytical and clinical validation) 開發者應考慮提供AI系統預期用途之透明化紀錄,將用於建構AI系統之訓練資料集組成(training dataset composition)之詳細資訊(包括大小、設定與族群、輸入與輸出資料及人口組成等)提供給使用者。此外,可考慮透過一獨立資料集(independent dataset)之外部分析確效(external analytical validation),展示訓練與測試資料以外之效能,並考慮將風險作為臨床確效之分級要求。最後,於AI系統之上市後監督與市場監督階段,可考慮進行一段期間密集之部署後監督(post-deployment monitoring)。 (4)資料品質(Data quality) 開發者應確認可用資料(available data)之品質,是否已足以支援AI系統之開發,且開發者應對AI系統進行嚴格之預發布評估(pre-release evaluations),以確保其不會放大訓練資料、演算法或系統設計其他元素中之偏差與錯誤等問題,且利害關係人還應考慮減輕與健康照護資料有關之品質問題與風險,並繼續努力創建資料生態系統,以促進優質資料來源之共享。 (5)隱私與資料保護(Privacy and data protection) 開發者於AI系統之設計與部署過程中,應考慮隱私與資料保護問題,並留意不同法規之適用範圍及差異,且於開發過程之早期,開發者即應充分瞭解適用之資料保護法規與隱私法規,並應確保開發過程符合或超過相關法規要求。 (6)參與及協作(Engagement and collaboration) 開發者於制定人工智慧創新與部署路線圖之期間,需考慮開發可近用且具有充足資訊之平台,以於適合與適當情況下促進利害關係人間之參與及協作;為加速人工智慧領域實務作法之進化,透過參與及協作來簡化人工智慧監管之監督流程即有必要。
歐盟航空安全局發布全球首件《最大起飛重量不逾六百公斤之無人機系統噪音量測指南》,有助於環境保護與防止噪音危害歐盟航空安全局(European Union Aviation Safety Agency, EASA)於2022年10月13日發布全球首件「最大起飛重量不逾六百公斤之無人機系統噪音量測指南」(Guidelines on Noise Measurement of Unmanned Aircraft Systems Lighter than 600 kg Operating in the Specific Category),適用於各式各樣的無人機設計,包括多旋翼機(multicopters)、固定翼航空器(fixed-wing aircraft)、直升機與動力起降航空器(powered-lift aircraft)等。 該指南旨在提供低度與中度風險(Low and Medium Risk)特定類別無人機運行時,具一致性的噪音量測程序與方法。該方法係考量實際層面與心理聲學(psychoacoustics),即有關人類對於無人機聲音的感知,設計為提供可重複且準確量測噪音,可量測最大起飛重量(Maximum Take-Off Weight, MTOM)小於600公斤的無人機,以落實歐盟環境保護的高度水準,並防止噪音對人體健康的重大影響。而所謂特定類別(specific category)包括包裹遞送、電力巡檢、鳥類管制(bird control)、測繪服務(mapping services)、空中監視(aerial surveillance)等活動。 此份指南雖不具強制性,亦非無人機認證規範,然而噪音是許多歐洲民眾所關注的問題,各國航空主管機關仍可以該指南為基準要求營運商,使之在自然公園或人口稠密區域等敏感環境運行無人機時可降低噪音。同時,無人機製造商、營運商或噪音量測組織,亦可依據該指南確立與特定設計及操作相關的噪音水準。此外,可將由此而生的噪音水準報告提供給EASA,以建立可供營運商與主管機關使用的線上公眾資料庫(online public repository)。
數位內容通路商收購相關支援技術數位內容於廣播應用上銷售與管理解決方案的領導廠商拜斯法爾 (Pathfire, Inc)於日前收購了相關的支援技術 Digital Media Gateway (DMG) Server Connect for Programming,並將此一技術應用於十二個廣播站上。 在技術整合之後, 拜斯法爾的程式聯結伺服器,將得以直接將 DMG伺服器之數位內容傳輸至廣播站的空中播送伺服器,並保留原先的數位格式。 隨著廣播電視的數位化,數位內容、廣播電視與相關數位技術的整合,應是未來發展的趨勢。相關技術的整合與相關企業的轉投資與併購,應會持續增加。政府在擬定政策與相關法令之時,宜事先掌握相關趨勢,因勢利導,以達事半功倍之效。
電力市場2.0--2015德國電力市場改革最新發展