微軟,摩托羅拉兩度正面交鋒專利訴訟

  微軟與摩托羅拉移動(谷歌旗下公司)將展開第二次關於智慧型手機及其他技術的專利侵權訴訟之審判。

  這場陪審訴訟將於周一在西雅圖舉辦,主要將解決“摩托羅拉是否違反以非合理的條款授權微軟在Xbox遊戲機中無線和視訊技術領域所使用的標準必要專利(standard essential patents)。

  去年11月,兩科技公司進行第一次大對決,確認了微軟應支付給摩托羅拉使用其專利技術的費用。經過5個月的審議後,美國地方法院James Robart審判法官裁定給微軟優惠方案,其建議每年支付約略180萬美元的費用給摩托羅拉,雖超過微軟所估算的100萬美元,但仍遠低於摩托羅拉原提出的40億美元的要求。

  微軟依據過去的文件資料表示,微軟過去已表示支付給摩托羅拉680萬美元的權利金,但摩托羅拉拒絕這筆權利金的費用。

  面對即將到來的訴訟案,微軟將主張摩托羅拉原先所提出的需求屬不合理要求,已違背其費用主張的合理和不帶歧視性的條款(reasonable and non-discriminatory terms)協議。

  合理和不帶歧視性的條款(reasonable and non-discriminatory terms),一般稱為“RAND“,其條款主要是為了防止擁有標準必要專利之公司,透過專利龔斷市場,使用不合理的競爭手法,造成其他競爭對手的傷害。

相關連結
※ 微軟,摩托羅拉兩度正面交鋒專利訴訟, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=6400&no=57&tp=1 (最後瀏覽日:2025/09/19)
引註此篇文章
你可能還會想看
世界衛生組織發布人工智慧於健康領域之監管考量因素文件,期能協助各國有效監管健康領域之人工智慧

世界衛生組織(World Health Organization, WHO)於2023年10月19日發布「人工智慧於健康領域之監管考量因素」(Regulatory considerations on artificial intelligence for health)文件,旨在協助各國有效監管健康領域之人工智慧,發揮其潛力同時最大限度地降低風險。本文件以下列六個領域概述健康人工智慧之監管考量因素: (1)文件化與透明度(Documentation and transparency) 開發者應預先規範(pre-specifying)以及明確記錄人工智慧系統(以下簡稱AI系統)之預期醫療目的與開發過程,如AI系統所欲解決之問題,以及資料集之選擇與利用、參考標準、參數、指標、於各開發階段與原始計畫之偏離及更新等事項,並建議以基於風險之方法(Risk-based approach),根據重要性之比例決定文件化之程度、以及AI系統之開發與確效紀錄之保持。 (2)風險管理與AI系統開發生命週期方法(Risk management and AI systems development lifecycle approaches) 開發者應在AI系統生命之所有階段,考慮整體產品生命週期方法(total product lifecycle approach),包括上市前開發管理、上市後監督與變更管理。此外,須考慮採用風險管理方法(risk management approach)來解決與AI系統相關之風險,如網路安全威脅與漏洞(vulnerabilities)、擬合不足(underfitting)、演算法偏差等。 (3)預期用途、分析及臨床確效(Intended use, and analytical and clinical validation) 開發者應考慮提供AI系統預期用途之透明化紀錄,將用於建構AI系統之訓練資料集組成(training dataset composition)之詳細資訊(包括大小、設定與族群、輸入與輸出資料及人口組成等)提供給使用者。此外,可考慮透過一獨立資料集(independent dataset)之外部分析確效(external analytical validation),展示訓練與測試資料以外之效能,並考慮將風險作為臨床確效之分級要求。最後,於AI系統之上市後監督與市場監督階段,可考慮進行一段期間密集之部署後監督(post-deployment monitoring)。 (4)資料品質(Data quality) 開發者應確認可用資料(available data)之品質,是否已足以支援AI系統之開發,且開發者應對AI系統進行嚴格之預發布評估(pre-release evaluations),以確保其不會放大訓練資料、演算法或系統設計其他元素中之偏差與錯誤等問題,且利害關係人還應考慮減輕與健康照護資料有關之品質問題與風險,並繼續努力創建資料生態系統,以促進優質資料來源之共享。 (5)隱私與資料保護(Privacy and data protection) 開發者於AI系統之設計與部署過程中,應考慮隱私與資料保護問題,並留意不同法規之適用範圍及差異,且於開發過程之早期,開發者即應充分瞭解適用之資料保護法規與隱私法規,並應確保開發過程符合或超過相關法規要求。 (6)參與及協作(Engagement and collaboration) 開發者於制定人工智慧創新與部署路線圖之期間,需考慮開發可近用且具有充足資訊之平台,以於適合與適當情況下促進利害關係人間之參與及協作;為加速人工智慧領域實務作法之進化,透過參與及協作來簡化人工智慧監管之監督流程即有必要。

基因轉殖複製羊 創造生技產業的新利基

  台灣複製動物技術又邁向新的里程碑。行政院長謝長廷於 9月8日上午宣布台灣第一頭外帶基因轉殖複製羊「寶鈺」,成功繁殖下一代,並將人類第八凝血因子成功遺傳給下一代。   目前人類第八凝血因子市價每公克價值 290萬美元﹙相當於新台幣8千萬元﹚, 全球每年約需要 300公克,預計將創造8億至9億美元價值的市場,由於「寶鈺」母子成為凝血因子供應源,其產值及身價自然十分驚人。雖然距離商品化階段仍有一段距離,但此項技術於世界已屬領先。   「寶鈺」順利產下後代將創下我國體細胞製動物正常繁殖後代之首例,以及開創基因轉殖羊之下一代傳承母羊外源基因人類第八凝血因子之生物科技的突破,未來運用複製與基因轉殖科技,利用家畜泌乳系統作為生物反應器以生產醫藥蛋白,將可成為台灣生技產業之利基點。

新加坡個資保護法責任指南

  新加坡個人資料保護法(Personal Data Protection Act 2012, PDPA)的基本原則之一在於可歸責性(Accountability)之建立,原因在於個資保護的責任歸屬,是組織對個資的持有與控制所為的承諾與責任表示。因此,PDPA第11、12條之法遵責任,組織必須對所持有或控制的個資負責,並且需制定並實施資料保護政策、溝通並告知員工相關政策、及履行PDPA義務所必須施行之流程與作法。於組織責任而言,PDPA雖有強制性義務責任,但應忖量組織內部責任歸屬的措施,而非僅將責任落於遵守法律的程度,組織必須從合於法規的方法轉為基於責任歸屬的方法來管理個人資料。   從而,該指南在政策、人員、流程等領域中透過資料生命週期的循環,確立組織責任歸屬。從落實良好的責任制始於組織領導力的概念出發,設定組織管理高層之職責與調性,繼而規劃處理個資及管理資料風險的方法。並由組織人員治理面向,確立溝通資訊與員工培訓知識與資源。除此之外,也在特定流程設置上,紀錄個人資料流動,了解如何收集、儲存、使用、揭露、歸檔或處理個人資料為流程的首要任務,繼而確認資料保護層面主要的差距與需要改進的領域。再將資料保護實踐於業務流程、系統、商品或服務。

「資訊儲存服務」提供者法律責任之研究-以日本實務新興發展為例

TOP