美國歐巴馬總統於2013年5月9日正式簽署「促進政府資訊開放並利機器讀取」行政命令(Executive Order 13642–Making Open and Machine Readable the New Defaut for Government Information),推崇聯邦政府過去釋出氣候、全球定位系統(GPS)等資訊對於私部門產業創新及新創事業(entrepreneurship and star-up)之正面影響,盼未來所有新增加的政府資料在資訊安全和隱私權雙重確保之前提下,將開放以可供機器可讀取之格式給公共大眾,帶動整體經濟正面循環發展。之前,美國推動聯邦政府資料開放政策,重要者為白宮科學技術政策辦公室(Office of Science and Technology Policy, OSTP)於2009年3月份啟動「開放政府倡議」(Open Government Initiative),民眾可透過「Data.gov」入口網站 ,取得高價值、機器可讀取之聯邦政府資料。
近年來,在公部門政府政策鼓勵導引下,不同的產業也逐漸發展出適用於特定產業的共同互通性標準(sectoral interoparability)。以醫療衛生領域為例,從2010年開始,歐巴馬總統乃宣布「藍色按鈕倡議」(Blue Button Initiative),病患得透過特定網頁(web-based)簡易下載其健康資訊(health information),並可供重複利用的格式下;同時,患者也可以選擇將該資訊分享給健康照護提供者(health care provider)、保險公司和信任的第三者(trusted third parties)。該倡議更挑戰軟體開發者(developer)在藍色按鈕的基礎上,開發更多的Apps軟體,使當事人更容易去管理掌控自身健康的狀況。在能源科技領域,近似於藍色按鈕倡議,白宮幕僚科技長Aneesh Chopra於2011年9月,也發起了「綠色按鈕倡議」(green button initaitive),挑戰美國境內大小事業單位(utilities)投入參與該倡議,研發一個機器可讀取之開放格式(a machine-readable open format),使消費者得透過連線網路重複近取之。
有鑒於網際網路開放的特性,且近年來來自外國網路攻擊不斷,於2013年2月份,NIST與國際間重要標準組織,如ISO、IEC和IEEE,首度就感應網絡(sensor networks)、機器對機器(M2M)和智慧聯網(IoT),提出一個跨界面之共通標準計畫(ISO/IEC/IEEE P21451-1-4 XMPP),該共通標準計畫內容包含: 封包傳輸(檢測)、全球獨特辨識、政策控制和加密,此共通標準得確保未來巨量資料領域資料近取之安全性 。
美國眾議院反壟斷委員會於2021年6月11日宣布五大反壟斷立法議案,目標是透過立法提升消費者、勞工和中小企業競爭空間,防止大型科技平台壟斷數位市場。2019年美國國會反壟斷委員會調查互聯網巨頭Amazon、Google、Facebook、Apple(GAFA)涉嫌濫用市場支配地位進行壟斷、抑制競爭、侵害用戶隱私、破壞新聞出版多元化。2020年10月發布《數位市場競爭調查》(Investigation of Competition In Digital Markets)強調恢復數位經濟市場競爭力重要性。2021年美國眾議院隨即提出五大反壟斷改革法案具體落實政策方向。 終止平台壟斷法案(Ending Platform Monopolies Act) 防止占主導地位的平台利用其對多個業務的控制能力,由董事或受託人持有公司25%以上的股票、盈利或資產,或以其他方式掌握實質控制權,要求用戶使用其平台購買產品或服務進而取得優勢地位。 美國選擇與創新線上法案(American Choice and Innovation Online Act) 禁止平台的歧視行為,包括使自家產品、服務及業務在平台上享有對手沒有的競爭優勢,禁止自我偏好或歧視其他同類業者之行為。 平台競爭與機會法案(Platform Competition and Opportunity Act) 禁止具獨占優勢平台藉由收購其他具競爭力對手,以擴大或鞏固線上平台市場力量。 透過啟動服務交換強化相容性和競爭力法案(Augmenting Compatibility and Competition by Enabling Service Switching Act) 透過啟動服務交換,滿足互操作性和資料可攜性,降低企業和消費者進入壁壘與轉換成本,使資料更容易移動到其他平台。 併購申報費現代化法案(Merger Filing Fee Modernization Act) 提高企業向政府申請併購案之審議費用,例如超過50億美金以上併購案審議費用從美金28萬提升至225萬,確保美國司法部和聯邦貿易委員會執行反壟斷資源。
泰國智慧財產制度在2017年國際智財指數中得分排名靠後由美國商會(the United States Chamber of Commerce)於2007年成立的全球智慧財產中心(Global Intellectual Property Center,以下簡稱GIPC)發布2017年國際智慧財產指數排名,前三名分別為美國、英國和德國,而泰國在45個經濟體中排名第40名,在滿分35分的評分中僅得到9.35分。指數的計算方式係基於專利、著作權、商標、營業秘密、執法、國際條約的批准和執行狀況等6個智財保護面向,共35個指標組成。 GIPC指出,泰國關鍵優勢在於具備商標、著作權和設計專利的基本註冊和保護制度,具備智財權執行的基本法律架構,配合新技術的發展試圖調整著作權的法規,改進部份海關防止仿冒的措施。而得分低的主要原因則為專利保護不足、數位著作權制度不完整、智財資產商業化的繁鎖程序和額外成本、仿冒猖獗和執法不力等。 泰國智慧財產局(the Department of Intellectual Property,以下簡稱DIP)局長表示美國商會未充分考慮泰國在智慧財產權發展方面的努力。泰國是按與貿易有關之智慧財產權協定(Agreement on Trade-Related Aspects of Intellectual Property Rights,以下簡稱TRIPS)的要求提供智財保護,然GIPC的部份指標較TRIPS的要求嚴格,導致泰國得分偏低;且指標評估者僅為美國商界人士,而非所有利害相關人。不過DIP也表示,儘管在推動泰國智慧財產權保護方面存在諸多困難,同時需要與包括衛生部、海關廳、財政部、國家警察總署、特安廳以及數位經濟和社會部等部門合作開展,DIP仍將繼續推動各項工作進展,努力提高泰國在國際智財指數的排名。 【本文同步刊登於TIPS網站(http://www.tips.org.tw)】
德國「新車輛及系統技術」補助計畫第二期「新車輛及系統技術」(Neue Fahrzeug- und Systemtechnologien)補助計畫係德國為確保汽車產業能夠在未來保持其技術領先地位所規劃的研究補助方案,該計畫從2015年6月起為期4年,聚焦車輛本體設計及車聯網技術解決方案;2018年11月,有感數位化變革所帶來的壓力,以及聯網自動駕駛顛覆未來交通面貌的潛力,德國聯邦經濟及能源部(BMWi)決定將前述計畫延長4年至2022年12月31日,並追加補助金額至每年6000萬歐元,促進聯網自動化駕駛及創新車輛領域的相關研發,具體鎖定的項目包含:(1)創新感測技術與傳動系統(2)高精度定位技術(3)迅速、安全、可靠的通信協作技術(4)創新資料融合及資料處理程序(5)人車互動技術(6)配套的測試程序與認證(7)電動車搭載自動駕駛功能的具體解決方案(8)透過輕量化提升能源效率技術(9)空氣動力學優化技術(10)創新動力推進技術。聯邦政府希望藉由第二輪的「新車輛及系統技術」補助計畫,協助歷來引以為傲的汽車工業克服資通訊技術革新、氣候保護趨嚴及能源效率要求所帶來的挑戰,全力避免此一德國重要經濟命脈淪為數位化浪潮下的犧牲者。
日本發布《資料品質管理指引》,強調歷程存證與溯源,建構可信任AI透明度2025年12月,日本人工智慧安全研究所(AI Safety Institute,下稱AISI)與日本獨立行政法人情報處理推進機構(Information-technology Promotion Agency Japan,下稱IPA)共同發布《資料品質管理指引》(Data Quality Management Guidebook)。此指引旨於協助組織落實資料品質管理,以最大化資料與AI的價值。指引指出AI加劇了「垃圾進,垃圾出(Garbage in, Garbage out)」的難題,資料品質將直接影響AI的產出。因此,為確保AI服務的準確性、可靠性與安全性,《資料品質管理指引》將AI所涉及的資料,以資料生命週期分為8個階段,並特別強調透過資料溯源,方能建立透明且可檢核的資料軌跡。 1.資料規劃階段:組織高層應界定資料蒐集與利用之目的,並具體說明組織之AI資料生命週期之各階段管理機制。 2.資料獲取階段:此步驟涉及生成、蒐集及從外部系統或實體取得資料,應優先從可靠的來源獲取AI模型的訓練資料,並明確記錄後設資料(Metadata)。後設資料指紀錄原始資料及資料歷程之相關資訊,包含資料的創建、轉檔(transformation)、傳輸及使用情況。因此,需要記錄資料的創建者、修改者或使用者,以及前述操作情況發生的時間點與操作方式。透過強化來源透明度,確保訓練資料進入AI系統時,即具備可驗證的信任基礎。 3.資料準備階段:重點在於AI標註(Labeling)品質管理,標註若不一致,將影響AI模型的準確性。此階段需執行資料清理,即刪除重複的資料、修正錯誤的資料內容,並持續補充後設資料。此外,可添加浮水印(Watermarking)以確保資料真實性與保護智慧財產權。 4.資料處理階段(Data Processing):建立即時監控及異常通報機制,以解決先前階段未發現的資料不一致、錯漏等資料品質問題。 5.AI系統建置與運作階段:導入RAG(檢索增強生成)技術,檢索更多具參考性的資料來源,以提升AI系統之可靠性,並應從AI的訓練資料中排除可能涉及個人資料或機密資訊外洩的內容。 6. AI產出之評估階段(Evaluation of Output):為確保產出內容準確,建議使用政府公開資料等具權威性資料來源(Authoritative Source of Truth, ASOT)作為評估資料集,搭配時間戳記用以查核參考資料的時效性(Currentness),避免AI採用過時的資料。 7.AI產出結果之交付階段(Deliver the Result):向使用者提供機器可讀的格式與後設資料,以便使用者透過後設資料檢查AI產出結果之來源依據,增進透明度與使用者信任。 8.停止使用階段(Decommissioning):當資料過時,應明確標示停止使用,若採取刪除,應留存刪除紀錄,確保留存完整的資料生命週期紀錄。 日本《資料品質管理指引》強調,完整的資料生命週期管理、強化溯源為AI安全與創新的基礎,有助組織確認內容準確性、決策歷程透明,方能最大化AI所帶來的價值。而我國企業可參考資策會科法所創意智財中心發布之《重要數位資料治理暨管理制度規範(EDGS)》,同樣強調從源頭開始保護資料,歷程存證與溯源為關鍵,有助於組織把控資料品質、放大AI價值。 本文為資策會科法所創智中心完成之著作,非經同意或授權,不得為轉載、公開播送、公開傳輸、改作或重製等利用行為。 本文同步刊登於TIPS網站(https://www.tips.org.tw)