全國農民工會(NFU)向美國食品藥物管理局(FDA)正式提交食品安全現代化法案(FSMA)意見書

   自2011年歐巴馬政府頒布《食品安全現代化法》(Food Safety Modernization Act, FSMA)以來,美國食品藥物管理局(Food and Drug Administration, FDA)研擬多項配套法規和施行細則藉以強化FSMA食品安全標準之具體落實。此外,為形成產業、工協會各方之修法共識,FDA開啟為期一年之意見徵集期間。另於今年度(2013)11月15日,美國全國農民工會(National Farmers Union, NFU)正式向美國食品藥物管理局提交食品安全現代化法案(Food Safety Modernization Act, FSMA)具體意見書,該項意見書要點歸納如下:

1.全國農民工會表示此修法方向,有助於事前預防食源性疾病(foodborne illness)擴散與食品風險之控管,有效達成法規建構之目的。

2.由於配套法規涉及食品鏈供應商、農民與生產者之具體責任,建議政府應評估多階段意見諮詢期(comment period)之規劃,廣納各利益相關者具體建議。

3.全國農民工會針對農業用水的品質標準、檢測措施與規範提出不同之見解,亦建議縮短農產品禁用生物土壤改良劑的時間。

本文為「經濟部產業技術司科技專案成果」

相關連結
相關附件
※ 全國農民工會(NFU)向美國食品藥物管理局(FDA)正式提交食品安全現代化法案(FSMA)意見書, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=6417&no=57&tp=1 (最後瀏覽日:2025/12/18)
引註此篇文章
你可能還會想看
歐盟資通安全局發布《物聯網安全準則-安全的物聯網供應鏈》

  歐盟資通安全局(European Union Agency for Cybersecurity, ENISA)於2020年11月發布《物聯網安全準則-安全的物聯網供應鏈》(Guidelines for Securing the IoT – Secure Supply Chain for IoT),旨在解決IoT供應鏈安全性的相關資安挑戰,幫助IoT設備供應鏈中的所有利害關係人,在構建或評估IoT技術時作出更好的安全決策。   本文件分析IoT供應鏈各個不同階段的重要資安議題,包括概念構想階段、開發階段、生產製造階段、使用階段及退場階段等。概念構想階段對於建立基本安全基礎非常重要,應兼顧實體安全和網路安全。開發階段包含軟體和硬體,生產階段涉及複雜的上下游供應鏈,此二階段因參與者眾多,觸及的資安議題也相當複雜。例如駭客藉由植入惡意程式,進行違背系統預設用途的其他行為;或是因為舊版本的系統無法隨技術的推展進行更新,而產生系統漏洞。於使用階段,開發人員應與使用者緊密合作,持續監督IoT設備使用安全。退場階段則需要安全地處理IoT設備所蒐集的資料,以及考慮電子設備回收可能造成大量汙染的問題。   總體而言,解決IoT資安問題,需要各個利害關係人彼此建立信賴關係,並進一步培養網路安全相關專業知識。在產品設計上則須遵守現有共通的安全性原則,並對產品設計保持透明性,以符合資安要求。

看韓國如何吹起下一波韓流—韓國著作權認證制度簡介

新加坡個人資料保護委員會針對企業蒐集、使用、揭露永久居留證(NRIC)號碼提出新的諮詢指引

  考量各行各業的從業習慣及民眾對企業蒐集、使用、揭露永久居留證(National Registration Identification Card, NRIC)號碼之看法,新加坡個人資料保護委員會(Personal Data Protection Commission, PDPC)於2017年11月提議修改個人資料保護法的諮詢指引(Advisory Guidelines on the Personal Data Protection Act ),明確界定企業蒐集、使用、揭露NRIC及其號碼之範圍。   依據舊的諮詢指引,新加坡個人資料保護法允許企業在基於合理特定目的並依法獲得當事人有效同意之情況下,蒐集、使用或揭露NRIC號碼。因此,不少企業活動習慣蒐集利用民眾的NRIC號碼,包括零售商店所舉辦的抽獎活動。然而,在PDPC提出新的諮詢指引後,企業可蒐集利用NRIC號碼的情況受到大幅限縮。   由於NRIC號碼與個人資訊息息相關且具不可取代性,無差別地蒐集利用將增加資料被用以從事非法活動之風險,故新的諮詢指引闡明,原則上企業不應蒐集、使用或揭露個人NRIC號碼或複印NRIC,除非有下列兩種例外情況之一:(一)法律要求;(二)為確實證明當事人身分所必要。第一種例外情況,雖因法律要求無須取得當事人同意,但企業仍應踐行告知義務,使當事人知悉NRIC號碼被蒐集、使用或揭露之目的,並確保企業內已採行適當安全措施,防止NRIC號碼被意外洩漏。第二種例外情況則仍須就NRIC號碼的蒐集、使用或揭露取得當事人同意,除非符合個人資料保護法規定下毋庸取得當事人同意之例外(如急救等緊急狀況)。   此外,PDPC針對得蒐集、使用或揭露NRIC號碼或複印NRIC的情況,以情境案例方式於諮詢指引中說明供企業參考,另給予12個月的審視期間,使企業得修正組織內部政策並尋找可行替代方案。

用ChatGPT找法院判決?從Roberto Mata v. Avianca, Inc.案淺析生成式AI之侷限

用ChatGPT找法院判決?從Roberto Mata v. Avianca, Inc.案淺析生成式AI之侷限 資訊工業策進會科技法律研究所 2023年09月08日 生成式AI是透過研究過去資料,以創造新內容和想法的AI技術,其應用領域包括文字、圖像及影音。以ChatGPT為例,OpenAI自2022年11月30日發布ChatGPT後,短短二個月內,全球月均用戶數即達到1億人,無疑成為民眾日常生活中最容易近用的AI科技。 惟,生成式AI大量使用後,其中的問題也逐漸浮現。例如,ChatGPT提供的回答僅是從所學習的資料中統整歸納,無法保證資料的正確性。Roberto Mata v. Avianca, Inc.案即是因律師利用ChatGPT撰寫訴狀,卻未重新審視其所提供判決之正確性,以致後續引發訴狀中所描述的判決不存在爭議。 壹、事件摘要 Roberto Mata v. Avianca, Inc.案[1]中,原告Roberto Mata於2019年8月搭乘哥倫比亞航空從薩爾瓦多飛往紐約,飛行過程中膝蓋遭空服員的推車撞傷,並於2022年2月向法院提起訴訟,要求哥倫比亞航空為空服員的疏失作出賠償;哥倫比亞航空則主張已超過《蒙特婁公約》(Montreal Convention)第35條所訂之航空器抵達日起兩年內向法院提出損害賠償之請求時效。 R然而,法院審理過程中發現原告訴狀內引用之六個判決無法從判決系統中查詢,進而質疑判決之真實性。原告律師Steven A. Schwartz因而坦承訴狀中引用的六個判決是ChatGPT所提供,並宣稱針對ChatGPT所提供的判決,曾多次向ChatGPT確認該判決之正確性[2]。 貳、生成式AI應用之潛在風險 雖然運用生成式AI技術並結合自身專業知識執行特定任務,可能有助於提升效率,惟,從前述Roberto Mata v. Avianca, Inc.案亦可看出,依目前生成式AI技術之發展,仍可能產生資訊正確性疑慮。以下彙整生成式AI應用之8大潛在風險[3]: 一、能源使用及對環境危害 相較於傳統機器學習,生成式AI模型訓練將耗費更多運算資源與能源。根據波士頓大學電腦科學系Kate Saenko副教授表示,OpenAI的GPT-3模型擁有1,750億個參數,約會消耗1,287兆瓦/時的電力,並排放552噸二氧化碳。亦即,每當向生成式AI下一個指令,其所消耗的能源量相較於一般搜尋引擎將可能高出4至5倍[4]。 二、能力超出預期(Capability Overhang) 運算系統的黑盒子可能發展出超乎開發人員或使用者想像的隱藏功能,此發展將會對人類帶來新的助力還是成為危險的阻力,則會隨著使用者之間的相互作用而定。 三、輸出結果有偏見 生成式AI通常是利用公開資料進行訓練,若輸入資料在訓練時未受監督,而帶有真實世界既存的刻板印象(如語言、種族、性別、性取向、能力、文化等),據此建立之AI模型輸出結果可能帶有偏見。 四、智慧財產權疑慮 生成式AI進行模型訓練時,需仰賴大量網路資料或從其他大型資料庫蒐集訓練資料。然而,若原始資料來源不明確,可能引發取得資料未經同意或違反授權條款之疑慮,導致生成的內容存在侵權風險。 五、缺乏驗證事實功能 生成式AI時常提供看似正確卻與實際情形不符的回覆,若使用者誤信該答案即可能帶來風險。另外,生成式AI屬於持續動態發展的資訊生態系統,當產出結果有偏誤時,若沒有大規模的人為干預恐難以有效解決此問題。 六、數位犯罪增加與資安攻擊 過去由人工產製的釣魚郵件或網站可能受限於技術限制而容易被識破,然而,生成式AI能夠快速建立具高度說服力的各種擬真資料,降低詐騙的進入門檻。又,駭客亦有可能在不熟悉技術的情況下,利用AI進一步找出資安弱點或攻擊方法,增加防禦難度。 七、敏感資料外洩 使用雲端服務提供商所建立的生成式AI時,由於輸入的資料存儲於外部伺服器,若要追蹤或刪除有一定難度,若遭有心人士利用而導致濫用、攻擊或竄改,將可能產生資料外洩的風險。 八、影子AI(Shadow AI) 影子AI係指開發者未知或無法控制之AI使用情境。隨著AI模型複雜性增加,若開發人員與使用者未進行充分溝通,或使用者在未經充分指導下使用 AI 工具,將可能產生無法預期之風險。 參、事件評析 在Roberto Mata v. Avianca, Inc.案中,法院關注的焦點在於律師的行為,而非對AI技術使用的批判。法院認為,隨著技術的進步,利用可信賴的AI工具作為協助用途並無不當,惟,律師應踐行其專業素養,確保所提交文件之正確性[5]。 當AI科技發展逐漸朝向自主與獨立的方向前進,仍需注意生成式AI使用上之侷限。當個人在使用生成式AI時,需具備獨立思考判斷的能力,並驗證產出結果之正確性,不宜全盤接受生成式AI提供之回答。針對企業或具高度專業領域人士使用生成式AI時,除確認結果正確性外,更需注意資料保護及治理議題,例如建立AI工具合理使用情境及加強員工使用相關工具之教育訓練。在成本能負擔的情況下,可選擇透過企業內部的基礎設施訓練AI模型,或是在訓練模型前確保敏感資料已經加密或匿名。並應注意自身行業領域相關法規之更新或頒布,以適時調整資料使用之方式。 雖目前生成式AI仍有其使用之侷限,仍應抱持開放的態度,在技術使用與風險預防之間取得平衡,以能夠在技術發展的同時,更好地學習新興科技工具之使用。 [1]Mata v. Avianca, Inc., 1:22-cv-01461, (S.D.N.Y.). [2]Benjamin Weiser, Here’s What Happens When Your Lawyer Uses ChatGPT, The New York Times, May 27, 2023, https://www.nytimes.com/2023/05/27/nyregion/avianca-airline-lawsuit-chatgpt.html (last visited Aug. 4, 2023). [3]Boston Consulting Group [BCG], The CEO’s Roadmap on Generative AI (Mar. 2023), https://media-publications.bcg.com/BCG-Executive-Perspectives-CEOs-Roadmap-on-Generative-AI.pdf (last visited Aug. 29, 2023). [4]Kate Saenko, Is generative AI bad for the environment? A computer scientist explains the carbon footprint of ChatGPT and its cousins, The Conversation (May 23, 2023.), https://theconversation.com/is-generative-ai-bad-for-the-environment-a-computer-scientist-explains-the-carbon-footprint-of-chatgpt-and-its-cousins-204096 (last visited Sep. 7, 2023). [5]Robert Lufrano, ChatGPT and the Limits of AI in Legal Research, National Law Review, Volume XIII, Number 195 (Mar. 2023), https://www.natlawreview.com/article/chatgpt-and-limits-ai-legal-research (last visited Aug. 29, 2023).

TOP