本文為「經濟部產業技術司科技專案成果」
為了解2022年公布《新創企業發展五年計畫》(スタートアップ育成5か年計画)(下稱新創計畫)後之情形,日本經濟產業省(簡稱經產省)針對新創企業造成之影響進行調查,於2024年7月22日發布「新創企業之經濟外溢效果」(スタートアップによる経済波及効果)調查摘要(下稱調查摘要),簡述如下: 1.新創企業之經濟貢獻:新創計畫期望透過新創企業提昇產業競爭力,並提供青年就業機會,故積極進行人才培育與輔導創業。根據調查摘要,自新創計畫執行後日本新創企業所創造之國內生產毛額(Gross Domestic Product, GDP)為10.47兆日元(約新台幣2.1兆元),若包含外溢效果(Spillover Effect)則為19.39兆日元(約新台幣3.88兆元),並創造52萬個就業機會。 2.新創企業改變經濟結構之潛力:根據調查摘要,過去10年間日本新創公司併購案件增長22%,顯示其經濟實力提升;且新創公司中女性主管的比例增加,亦顯示其可改善日本女性職場地位。 3.創投資金注入引發新創企業之外溢效果:新創計畫鼓勵創投公司投資新創企業,由於擁有更多之週轉資金,與未接受創投的企業相比,接受創投的企業在擴大就業和創新方面表現更佳。新創計畫推動後,目前日本創投對新創公司之投資金額增加7.8倍(70%之新創公司獲得創投公司投資),並創造13.94兆日元(約新台幣2.8兆元)之GDP。
智慧財產法院成立及運作的政策 正式啟動司法院於94年年終記者會時,正式發佈我國智慧財產法院即將成立及運作的政策。有鑒於國內外企業在台的專利、商標、著作權等紛爭越來越多,為了節省司法資源、快速釐清企業糾紛、不耗損社會資源等目的,智慧財產法院乃為司法現代化相當重要的一環。 我國的智財官司時,多是以刑事訴訟為主附帶民事官司,有別於歐美各國的智慧財產案件多以民事訴訟為主。未來智慧財產法院所管轄案件除了民事訴訟事件、刑事訴訟案件外,還包括有行政訴訟事件與強制執行事件,集中事權,專責審理智財權相關案件。此外,為了因應科技界日新月異的技術發展,在智慧財產法院扮演關鍵角色的「技術審理官」,主要負責輔助法官從事專業技術問題之判斷,因此除了由全職公務員-專利審查官或是商標審查官擔任外,亦可任用公私立大專院校之老師或專業研究機構之研究員。 另一方面,為避免大型企業利用資金優渥之優勢,打壓小型科技公司的發展,智慧財產訴訟中的「假處分」聲請規定,相較於現行民事訴訟法規定嚴格許多,假處分聲請人除提供擔保金外,還必須「強制釋明」理由,若是釋明不足者,法院可駁回其聲請。 目前司法院已研擬完成「智慧財產法院組織法草案」及「智慧財產案件審理法草案」的全部條文,並公布在司法院網站上,預定在立法院下會期提交立法。
Nbn 工研院將釋出百多項專利工業技術研究院系統晶片技術發展中心( STC)計畫將其與國立交通大學推出的靜電放電防護(ESD protection)技術相關專利授權業界,該專利以6大組合區分,包含「輸出入介面電路之靜電放電防護」、「高速/射頻/混壓輸入輸出IC之靜電放電與電性栓鎖防護」、「輸出入單元電路設計」等共計110件專利,預計進行專屬授權。 隨著半導體產業競爭全球化,競爭型態也從過去的價格戰轉變成智慧戰,半導體產業廠商需快速大量取得專利權進行佈局,才能保持產業競爭力。配合產業界對專利的需求,工研院此次專屬授權的 ESD專利組合,主要來自STC的研發成果,將IC半導體產業中極重要的靜電放電防護與輸出入單元電路設計(I/O Circuit Design)相關專利,搭配交通大學電子工程系靜電放電防護專利,公開徵求專屬授權廠商。 ESD專利組合專屬授權說明會訂7月21日上午9時30分於工研院竹東中興院區9館010室召開,內容包括專屬授權競標規則、專利組合及專屬授權契約內容介紹,並隨即開放通訊投標,結標日為9月23日。
經濟合作與發展組織發布《促進AI可歸責性:在生命週期中治理與管理風險以實現可信賴的AI》經濟合作與發展組織(Organisation for Economic Co-operation and Development, OECD)於2023年2月23日發布《促進AI可歸責性:在生命週期中治理與管理風險以實現可信賴的AI》(Advancing accountability in AI: Governing and managing risks throughout the lifecycle for trustworthy AI)。本報告整合ISO 31000:2018風險管理框架(risk-management framework)、美國國家標準暨技術研究院(National Institute of Standards and Technology, NIST)人工智慧風險管理框架(Artificial Intelligence Risk Management Framework, AI RMF)與OECD負責任商業行為之盡職調查指南(OECD Due Diligence Guidance for Responsible Business Conduct)等文件,將AI風險管理分為「界定、評估、處理、治理」四個階段: 1.界定:範圍、背景、參與者和風險準則(Define: Scope, context, actors and criteria)。AI風險會因不同使用情境及環境而有差異,第一步應先界定AI系統生命週期中每個階段涉及之範圍、參與者與利害關係人,並就各角色適用適當的風險評估準則。 2.評估:識別並量測AI風險(Assess: Identify and measure AI risks)。透過識別與分析個人、整體及社會層面的問題,評估潛在風險與發生程度,並根據各項基本價值原則及評估標準進行風險量測。 3.處理:預防、減輕或停止AI風險(Treat: Prevent, mitigate, or cease AI risks)。風險處理考慮每個潛在風險的影響,並大致分為與流程相關(Process-related)及技術(Technical)之兩大處理策略。前者要求AI參與者建立系統設計開發之相關管理程序,後者則與系統技術規格相關,處理此類風險可能需重新訓練或重新評估AI模型。 4.治理:監控、紀錄、溝通、諮詢與融入(Govern: Monitor, document, communicate, consult and embed)。透過在組織中導入培養風險管理的文化,並持續監控、審查管理流程、溝通與諮詢,以及保存相關紀錄,以進行治理。治理之重要性在於能為AI風險管理流程進行外在監督,並能夠更廣泛地在不同類型的組織中建立相應機制。