淺談中國網絡文化內容自審制於手機遊戲管理之影響

淺談中國網絡文化內容自審制於手機遊戲管理之影響

科技法律研究所
2013年12月31日

壹、前言

  中國大陸文化部日前依據互聯網文化管理暫行規定第19條規定,頒布施行「網絡文化經營單位內容自審管理辦法」(簡稱自審管理辦法)。要求以營利爲目的提供「網絡文化產品及服務」之單位(即所謂的「網絡文化經營單位」),應進行自我審核,以確保內容之合法性。所謂「網絡文化產品及服務」依據互聯網文化管理暫行規定,包括網絡音樂、動漫、遊戲等文化產品及以此所為之製作、複製、進口、發行、播放等活動。據中國大陸文化部表示,制定本辦法是為了落實其國務院轉變政府職能、簡政放權的政策方向,特別是網絡遊戲中的手機遊戲部分,期待能透過企業自律機制,達到市場的有效管理。

貳、自審管理辦法重點說明

  在具體做法上,自審管理辦法規範「網絡文化經營單位」必須符合四項具體要求,包括:(1)內容管理制度與部門:企業須建立內容管理制度與審核部門,明定內容審核之工作劃分、標準、流程及責任追究辦法;(2)內容審核人員:企業內部設置之內容審核部門須配置至少3名以上領有「內容審核人員證書」之審核人員,並指定其中1名審核人員為內容管理負責人,負責簽核其餘審核人員之審查意見;(3)踐行備案程序:企業內部於建立上述之審核程序後,應向所在地省級文化行政部門申報備案;(4)持續參與審核訓練:針對內容審核人員,省級文化行政部門將負責相關培訓考核及檢查監督工作,其中對於經考核合格者發給證書者,每年至少應參加1次後續培訓,以持續掌握內容審核的政策法規和相關知識。

  針對未依該辦法實施自審制度之「網絡文化經營單位」,依據自審管理辦法第14條規定,則得由縣級以上文化行政部門或者文化市場綜合執法機構依照「互聯網文化管理暫行規定」第29條規定責令改正,並可根據情節輕重處20000元以下罰款。此外,依據自審管理辦法第13條規定,倘若內容審核人員出現重大審核失誤時,發證部門得注銷其「內容審核人員證書」。

  最後,依照自審管理辦法第15條規定,相關「網絡文化產品及服務」在自審管理辦法施行前,如應踐行備案或批准程序,在施行後仍須按相關規定辦理,不會因企業自審制度建立而得以免除。

參、規範簡評

  依照自審管理辦法規定,自審制度適用範圍涵蓋了所有應依法取得「網絡文化經營許可證」的網絡文化經營單位。據中國大陸文化部新聞稿指出,此舉將有助於端正手機遊戲市場亂象。其具體理由,本文簡要歸納如下,並附帶說明此措施對於台灣手機遊戲業者進入中國大陸市場將帶來之影響。

  過去中國大陸文化部管理「網絡遊戲」,主要是透過「網絡遊戲管理暫行辦法」(簡稱暫行辦法)。當中針對「國產網絡遊戲」採取備案制,要求於營運日起30日內向其文化行政部門進行備案(暫行辦法第13條參照);「進口網絡遊戲」則採審查制,須事前獲得其文化行政部門審查批准,方可上線營運(暫行辦法第11條參照)。且解釋上所謂「網絡遊戲」並未排除「手機遊戲」,故外國業者在提供手機遊戲服務予中國大陸時,皆應授權當地具備「網絡文化經營許可證」之「網絡遊戲運營企業」進口並履行相關申報作業。

  但現實上,基於手機遊戲開發成本低、週期短之特性,手機遊戲業者存在為數不少小規模企業,所開發遊戲數量自2011年以來呈現爆炸性成長。因而暫行辦法之相關管理要求,實際執行通常難以落實,便常見有手機遊戲規避上述申報作業,使得整體手機遊戲管理呈現真空狀態。

  但此一管理困境,在施行自審管理辦法後,預期將有所改善。根據中國大陸文化部新聞稿指出,目前中國大陸手機遊戲市場主導權,已逐漸由遊戲開發商轉移至平台商。因此透過自審管理辦法下放內容審查權於大型平台上,再強化對大型平台的監管,可集中政府資源、擺脫過去針對個別遊戲業者的查緝困難。

  同時,由於自審管理辦法要求企業應賦予內容審核人員獨立審核職權,官方新聞稿亦進一步指出內容管理負責人層級應提升至副總經理以上。一旦內容審核人員發生重大失職時,最重得注銷其審核權限。因而運作上將可間接影響企業人事權限分配,對於企業高層業務執行帶來一定程度箝制,進而達到有效管理之目的。

  對於台灣業者而言,由於按照暫行辦法第12條規定,申報進口網絡遊戲內容審查者,必須為取得獨占授權之「網絡遊戲運營企業」。因此,台灣遊戲業者未來在授權遊戲於大陸業者營運時,應留意其合作之大陸「網絡文化經營單位」,是否有建立上述自審制度,以避免對其產品拓展產生不利影響。同時,應留意其是否有踐行相關進口網絡遊戲內容審查申報,以避免觸法。

資料來源:
《文化部關于實施〈網絡文化經營單位內容自審管理辦法〉的通知》(文市發〔2013〕39號),http://big5.gov.cn/gate/big5/www.gov.cn/zwgk/2013-08/22/content_2471896.htm (最後瀏覽日:2013/12/25)。
新华网,〈文化部放权网络文化企业内容自审 网游网络音乐先行试点〉,2013/08/20,http://news.xinhuanet.com/politics/2013-08/20/c_117021657.htm(最後瀏覽日:2013/12/25)。
中华人民共和国文化部文化市场司,〈庹祖海同志在贯彻落实《网络文化经营单位内容自审管理办法》视频会议上的讲话〉,2013/11/29,http://www.ccnt.gov.cn/sjzz/whscs_sjzz/whscs_zhxw/201312/t20131202_424345.htm(最後瀏覽日:2013/12/25)。

※ 淺談中國網絡文化內容自審制於手機遊戲管理之影響, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=6434&no=57&tp=1 (最後瀏覽日:2025/12/26)
引註此篇文章
你可能還會想看
美國制訂「促進政府資訊開放」行政命令及推動「藍色按鈕倡議」計畫

  美國歐巴馬總統於2013年5月9日正式簽署「促進政府資訊開放並利機器讀取」行政命令(Executive Order 13642–Making Open and Machine Readable the New Defaut for Government Information),推崇聯邦政府過去釋出氣候、全球定位系統(GPS)等資訊對於私部門產業創新及新創事業(entrepreneurship and star-up)之正面影響,盼未來所有新增加的政府資料在資訊安全和隱私權雙重確保之前提下,將開放以可供機器可讀取之格式給公共大眾,帶動整體經濟正面循環發展。之前,美國推動聯邦政府資料開放政策,重要者為白宮科學技術政策辦公室(Office of Science and Technology Policy, OSTP)於2009年3月份啟動「開放政府倡議」(Open Government Initiative),民眾可透過「Data.gov」入口網站 ,取得高價值、機器可讀取之聯邦政府資料。   近年來,在公部門政府政策鼓勵導引下,不同的產業也逐漸發展出適用於特定產業的共同互通性標準(sectoral interoparability)。以醫療衛生領域為例,從2010年開始,歐巴馬總統乃宣布「藍色按鈕倡議」(Blue Button Initiative),病患得透過特定網頁(web-based)簡易下載其健康資訊(health information),並可供重複利用的格式下;同時,患者也可以選擇將該資訊分享給健康照護提供者(health care provider)、保險公司和信任的第三者(trusted third parties)。該倡議更挑戰軟體開發者(developer)在藍色按鈕的基礎上,開發更多的Apps軟體,使當事人更容易去管理掌控自身健康的狀況。在能源科技領域,近似於藍色按鈕倡議,白宮幕僚科技長Aneesh Chopra於2011年9月,也發起了「綠色按鈕倡議」(green button initaitive),挑戰美國境內大小事業單位(utilities)投入參與該倡議,研發一個機器可讀取之開放格式(a machine-readable open format),使消費者得透過連線網路重複近取之。   有鑒於網際網路開放的特性,且近年來來自外國網路攻擊不斷,於2013年2月份,NIST與國際間重要標準組織,如ISO、IEC和IEEE,首度就感應網絡(sensor networks)、機器對機器(M2M)和智慧聯網(IoT),提出一個跨界面之共通標準計畫(ISO/IEC/IEEE P21451-1-4 XMPP),該共通標準計畫內容包含: 封包傳輸(檢測)、全球獨特辨識、政策控制和加密,此共通標準得確保未來巨量資料領域資料近取之安全性 。

歐洲網路與資訊安全機構和歐洲標準化機構針對網路安全簽訂合作協議

  歐洲網路與資訊安全機構(European Network and Information Security Agency,簡稱ENISA)為了支持網路安全商品和服務進行標準化,於今年七月九日和歐洲標準化委員會(European Committee for Standardization,簡稱CEN)與歐洲電工技術標準化委員會(European Committee for Electrotechnical Standardization,簡稱CENELEC)共同簽署合作協議,來強化網路安全標準化的各項措施。   本合作協議的目的,在於能夠更有效地了解與解決網路和資訊安全標準化的議題,特別是處理和ENISA有所關連的不同訊息和通信技術(ICT)部門。本次簽署的合作協議,可視為是近來ENISA制定新法規的額外延伸,其將給予ENISA針對支持網路資訊安全(NIS)標準的發展,有更多積極的角色。本合作協議涉及的範圍包含下列情況:   ‧ENISA於識別技術委員會(identified technical committees)作為觀察人,CEN與CENELEC的工作小組與講習作為支持歐洲標準的準備   ‧CEN與CENELEC評估ENISA相關的研究成果,並且將其轉化成標準化活動   ‧ENISA參與或適當地擔當依據CEN-CENELEC內部規章所組成的相關技術委員會、工作小組與講習之主席   ‧散布和促進出版物、研究結果、會議或研討會之消息流通   ‧對於促進活動與因NIS標準相關工作之商業聯繫建立和研究網絡提供相互支持   ‧針對處理攸關NIS標準活動的科技和研究議題,舉辦各項局部工作小組、會議和研討會   ‧針對共同利益確定之議題作相關資訊交換   有鑑於ENISA逐漸強調NIS標準化的相關工作,標準化不僅能改善網路安全外,更能提高所有網路安全產品與服務當面對不同網路威脅時的防禦能力。是以,我國資安主管機關是否亦需協調所有資安部門,針對網路安全技術架構研擬或規劃出相關標準化的網路威脅防範模組,則是亟需思考的問題。

美國 FCC 利用電信普及服務推動偏遠地區醫療照護體系

美國著作權局發布AI著作權報告第三部分:生成式AI訓練-AI訓練是否構成合理使用?

美國著作權局發布AI著作權報告第三部分:生成式AI訓練-AI訓練是否構成合理使用? 資訊工業策進會科技法律研究所 2025年06月04日 美國著作權局於2025年5月發布著作權與AI第三部分報告之預出版本 (Copyright and Artificial Intelligence Part 3: Generative AI Training pre-publication version)[1],該報告重點為生成式AI訓練資料與著作權之關係,彙整各方意見並分析現行法制之挑戰及修改方向,目前發布之版本為預出版本,該報告說明將於近期發布最終確認版,預期其結論與實質內容並不會有修改。 壹、事件摘要 美國著作權局自2023年起即開始對AI所引發之著作權法律及政策問題進行研究,同年8月著作權局發布著作權及AI諮詢通知(Comments on Artificial Intelligence Notice of Inquiry, NOI),徵集各界對AI著作權議題之意見,著作權局亦針對相關議題舉辦多場公聽會及研討會協助意見之蒐集[2]。NOI發布後蒐集到之意見經著作權局整理分析,於2024年7月起發布AI著作權報告,第一部分為數位仿造,第二部分於2025年1月發布為就AI作品之著作可保護性之分析,而同年5月所發布之第三部分則聚焦於生成式AI之訓練。 生成式AI於訓練過程可能大量使用受著作權保護之作品,此份報告針對訓練過程可能涉及之著作權問題進行分析,主要說明AI模型訓練過程中使用受著作權保護作品是否可構成合理使用。 貳、重點說明 一、生成式AI模型訓練及模型權重對重製權之侵害 使用受著作權保護作品進行AI模型訓練涉及著作權中之重製,除非開發者能提出授權或其他合理抗辯如合理使用等,否則可能對一項或多項著作權利構成初步侵權(Prima Facie Infringement)。AI開發者於模型訓練階段會進行多次作品複製,包含下載作品、於儲存媒介間轉換、將作品進行格式化或製作副本等[3],模型訓練過程中暫時複製之作品亦有可能因其存在於時間足夠而構成重製權之侵害[4]。 在特定情形下,模型權重(model weights)[5]之複製亦可能構成重製權之侵害。訓練過程可能使模型權重包含著作權作品,而若第三方複製了包含著作權作品之模型權重,即便其未參與模型之訓練,亦可能構成初步侵權[6]。若模型能在未經外部輸入之情形下產出與訓練範例相似之內容時,表示此範例必以某種形式存在於模型權重中,故此模型權重之複製極有可能侵犯著作重製權[7]。換言之,不僅開發者有可能因模型權重之複製侵害著作權人之權利,部署、使用等第三方若複製模型權重亦有可能構成對重製權之侵害。 著作權局指出,模型權重究竟是否會構成重製權或甚至衍生作品之侵權,須判斷該模型權重是否保留與作品受權利保護部分實質相似之內容,僅有在實質相似之情形下,模型權重之複製才可能構成侵權[8]。 二、合理使用 對著作權作品之合理使用可做為作品重製權的抗辯,著作權局於報告中就不同因素分析AI使用著作權作品進行訓練是否得主張合理使用。AI於訓練過程中會有多次複製行為,惟在判斷AI模型訓練是否為對作品之合理使用,仍須視整體使用情境進行判斷[9]。 (1) 作品轉化性須視模型目的及佈署判斷 報告中分析作品之轉化性(transformativeness)[10],AI訓練使用作品是否具有轉化性並非絕對,而是依據模型最終之功能及佈署有程度上之區別,須依個案判斷。若模型之訓練目的為用於研究或封閉系統,則該模型具高轉化性;若其目的是生成與訓練用作品實質相似之結果時,不具轉化性。多數模型之轉化程度會落在前述兩極端之中間,如模型使用特定類型之作品進行訓練,用以生成使用目的與原作相同之內容時,即便其生成內容未有實質相似,頂多僅為有限度之轉化(modestly transformative)[11]。AI開發商得於其系統設置防護措施,限制模型複製受著作權保護作品之節錄內容,使生成內容之目的與原作品不同,此措施能使模型訓練更具轉化性[12]。 有論者認為,使用受著作權保護作品進行AI模型訓練並非出於表達目的,且近似人類學習,因此實質上應是具有轉化性的,著作權局否定了前述兩種說法。報告中說明,語言模型於訓練時所吸收的內容包含文句、段落及文件之排列選擇,並非單純僅吸收其單字含意,且所生成之模型是被用作創造表達性內容,故不得謂AI模型為非表達性目的[13]。其次,針對人類學習觀點,報告首先闡明,學生基於學習目的亦不得以合理使用為由複製整本著作,因此人類學習並不得直接作為合理使用之抗辯。生成式AI之訓練能迅速分析並生成完美之作品,此非如同人類經學習後會產出具個別人格特質之結果,故著作權局不同意AI模型之訓練為與人類學習相同具有轉化性之論點[14]。 (2) 受著作權保護作品之表達性 AI訓練所使用之受著作權保護作品若具較高創作或表達性,如小說、電影等,其著作權比其他作品如電腦編碼等功能性作品更接近著作權之保護核心。而AI模型訓練來源多元,因此判斷上仍須視個案模型及作品而定。 (3) 使用作品之合理比例 AI模型訓練需大量複製受著作權保護作品,於判斷其複製比例是否合理時,係判斷模型訓練所複製之部分對於受著作權保護作品之數量及重要性使否合理[15]。作品使用之合理性,須考量重要性以及數量,若模型僅使用小部分作品做訓練,但該部分為著作權作品之核心部分,此使用並不一定合理。 在使用完整作品層面,生成式AI較一般搜尋引擎更不具合理性,生成式AI所提供之資訊並非僅限於其訓練資料庫中所複製作品資料。然而,許多生成式AI之訓練方式必須使用完整作品進行訓練,因此,著作權局指出,雖開發者使用完整作品進行訓練與合理使用相悖,但若其訓練具有轉化性目的(transformative purpose),並且有必要透過大量作品之訓練以提升模型效能時,則使用整部作品進行訓練可能被認為合理[16]。換言之,使用完整作品進行訓練合理與否須連同其使用必要性及訓練目的一併考量。 (4) 影響原作品之潛在市場或價值 報告中點出三項生成式AI訓練可能造成的市場危害。 A 銷售損失(lose sale):權利人因潛在消費者選擇AI複製創作取代原作,而失去收入。 B 市場稀釋 (market dilution):AI生成內容之速度以及規模對訓練資料中同類作品之市場造成稀釋風險,原作者將更難銷售其作品亦將使消費者更難找到真人創作之作品[17]。AI所生成風格相似之作品亦會導致市場稀釋,風格非為著作權所保障之方為,惟若AI生成與作品風格相似之內容,即便未有實質相似,但消費者可能因此難以分辨AI創作與真人作者,將使AI作品與原作者之作品於市場上直接競爭而影響原市場[18]。 C 喪失授權收入機會 (lost licensing opportunities):權利人本可就其作品於市場上有授權收入之機會,但因AI未經授權使用作品進行訓練而喪失該部分收入[19]。 三、 授權使用 對於AI自願授權之情形於近年越來越普遍,報告亦肯認自願授權之可行性,雖自願授權可行,且已有開發商開始實施,惟對於完全滿足AI產業之需求仍存有疑義[20]。該報告認為,即便現階段自願性授權仍為發展中之制度,但該制度確實能避免使用著作權作品之不確定性。著作權局認為應讓自願性授權制度於授權市場於無政府干預情形下繼續發展,若未來於特定類型作品中出現失靈情形時,再考慮進行擴大集體授權等干預措施[21]。 參、事件評析 AI訓練使用著作權保護作品是否可以合理使用作為抗辯為近年AI發展下著作權高度討論問題之一。目前美國各地法院中有40多件相關案件正在進行審理,然就此報告之結論觀之,其並未對AI訓練是否可作為合理使用給予統一解答,合理使用與否仍須視個案而定。如同報告結論所提及,AI訓練過程中,使用受著作權保護作品可能具有轉化性,但是否足以構成合理使用,仍須視其所使用之作品、來源以及目的等個案因素而定[22]。AI訓練於著作權仍存在一定程度之不確定性。 值得注意的是,雖報告並未明示AI訓練使否為合理使用著作權作品,惟其立場似乎更偏向有利於著作權利人。例如報告中於轉化性認定具有灰色地帶,開發商是否能主張合理使用仍需於後續由法院個案認定。此外,報告中提及市場稀釋理論,目前尚未有法院採用,對合理使用之認定較為嚴格,即使未有實質相似之生成內容亦有可能因影響市場競爭被視為非合理使用,可見該理論對著作權利人之權利保障。 同時著作權局亦正向看待產業界透過自願性授權進行作品訓練之方法,雖該制度於AI訓練上尚未為一完善制度,但確實地授權制度能同時促進產業發展並保護著作權[23]。目前實務上亦是以此種作法解決合理使用之困境,但授權制度仍有待市場持續發展完善制度以確保能符合AI訓練之需求。 美國著作權局之報告雖對AI使用著作權保護作品進行訓練進行分析及說明,惟其結論仍是認為判斷上需依照個案分析。目前國際上尚未有對AI合理使用之實際定論,自願性授權仍為產業界所使用之方法。我國著作權法亦未對AI訓練之合理使用有說明,國際上將會如何發展仍有待觀察。 資策會科法所創智中心致力於著作權相關科技法律研究,本中心將持續關注相關議題並更新動態。 本文為資策會科法所創智中心完成之著作,非經同意或授權,不得為轉載、公開播送、公開傳輸、改作或重製等利用行為。 [1]U.S. Copyright Office Copyright and Artificial Intelligence, Part 3: Generative AI Training pre-publication version, https://www.copyright.gov/ai/Copyright-and-Artificial-Intelligence-Part-3-Generative-AI-Training-Report-Pre-Publication-Version.pdf [2]U.S. Copyright Office, Copyright Office Issues Notice of Inquiry on Copyright and Artificial Intelligence, https://www.copyright.gov/newsnet/2023/1017.html (last viewed: 2025/05/19) [3]supra note 1, at 26. [4]Id. at 27. [5]AI模型之建立仰賴神經網,主要功能為將輸入資料轉換為輸出資料。神經網路之運作方式係透過大量於訓練過程中產生之參數進行運案,而該些參數即為「權重」(weights)。 [6]Id. at 28. [7]Id. [8]Id. at 30. [9]Id. at 36-37. [10]轉化性係指新作品加入新元素,具有與原作不同目的或性質,且以新表達、意義或訊息改造原作。並且新作品於市場上較不會取代原作。 [11]Id. at 46. [12]Id. [13]Id. at 47. [14]Id. at 48. [15]Id. at 54. [16]Id. at 60. [17]Id. at 65. [18]Id. at 65-66. [19]Id. at 66-67. [20]Id. at 85. [21]Id. at 106. [22]Id. at 107. [23]Id. 本文同步刊登於TIPS網站(https://www.tips.org.tw)

TOP