荷蘭資料保護局(Data Protection Authority, DPA)歷經長達七個月的調查,於2013年11月28日發布新聞稿,聲明Google違反該國資料保護法,因其未適當告知用戶他們蒐集了什麼資料、對資料做了些什麼事。
DPA主席Jacob Kohnstamm表示:「Google在未經你我同意的情形下,對我們的個人資料編織了一張無形的網,而這是違法的。」調查報告援引了Google執行長Eric Schmidt在2010年一場訪談中所說的話:「你不用鍵入任何字,我們知道你正在什麼地方、去過什麼地方,甚至或多或少知道你在想些什麼。」。
調查顯示Google為了展示個人化的廣告及提供個人化的服務,而將不同服務取得的個人資料加以合併,如搜尋記錄、所在位置及觀看過的影片等。然而,從用戶的觀點來看,這些服務係基於全然不同的目的,而Google亦未事先提供用戶同意或拒絕的選項。依照荷蘭資料保護法的規定,Google合併個人資料前,應經當事人明示同意,而該同意無法藉由概括(隱私)服務條款取得。針對DPA的聲明,Google回應他們已經提供用戶詳細資訊,完全符合荷蘭法律。
DPA表示將通知Google出席聽證會,就調查結果進行討論,並決定是否對Google採取強制措施。但是,從Google的回應看來,他們不太可能在聽證過後改變心意。以先前Google街景車透過Wi-fi無線網路蒐集資料的案例為鑑,Google(市值達3500億美元)若繼續拒絕遵循,將有可能面臨高達1佰萬歐元的罰鍰。
美國聯邦貿易委員會(下稱FTC)於2024年4月23日通過「禁止企業簽訂競業禁止契約」最終版本的規定(以下稱「最終規定」) ,FTC認為「簽訂或執行競業禁止契約」違反《聯邦貿易委員會法》(Federal Trade Commission Act)第5條之防止不公平競爭之違法手段之規定。最終規定所禁止簽訂競業禁止契約的對象廣泛,包含獨立承包商、為營利企業工作的員工,並將可能取代其他規範競業禁止契約效力之州法。不過,尚有部分情形將排除最終規定的適用,如: (1)公司與高階主管的既有競業禁止契約仍屬有效,而高階主管被定義為「年收入超過 151,164 美元(約新臺幣4,927,492元)且擔任決策職位」的員工,如總裁、首席執行長或其他擁有企業重大決策權的職位。 (2)允許出於善意收購企業的雙方簽訂競業禁止契約。 (3)因FTC對於某些產業無監管權,因此該等產業不適用於禁止簽訂競業禁止契約的最終規定,如非營利組織、銀行、保險公司以及航空公司。 FTC指出最終規定於美國聯邦公報上公布120天(約4個月)後生效,並要求現已簽訂競業禁止契約之雇主負有通知義務,雇主須透過數位(電子郵件或簡訊)或紙本方式,明確地通知現任、前員工,其既有的競業禁止契約即將失效。 但美國商會(U.S. Chamber of Commerce)已聲明表示該最終規定有超出FTC管轄範圍之疑慮,故後續可否執行最終規定,仍有待密切關注。 為因應FTC大範圍禁止簽訂競業禁止契約之法制方向,建議公司可參考資策會科法所發布之「營業秘密保護管理規範」以系統性方式檢視不同面向的既有管理作法,如人員面、內容面等,以落實對於營業秘密的保護。 1.關於文件的管理建議 先盤點紙本及數位機密文件;再設定文件之接觸權限。 2.關於人員的管理建議 留意人員的智財教育訓練;人員的保密或智財權歸屬契約,確保契約約定已納入公司想保護的機密資訊,比如客戶或供應商名單及聯絡資訊、產品規格、製程等;以及離職管理。 本文同步刊登於TIPS網站(https://www.tips.org.tw)。
英國發布人工智慧網路資安實務守則英國政府於2025年1月31日發布「人工智慧網路資安實務守則」(Code of Practice for the Cyber Security of AI,以下簡稱「實務守則」),目的是提供人工智慧(AI)系統的網路資安指引。該實務守則為英國參考國際上主要標準、規範後所訂定之自願性指引,以期降低人工智慧所面臨的網路資安風險,並促使人工智慧系統開發者與供應商落實基本的資安措施,以確保人工智慧系統的安性和可靠性。 由於人工智慧系統在功能與運作模式上與傳統網路架構及軟體有明顯的不同,因此產生新的資安風險,主要包含以下: 1. 資料投毒(Data Poisoning):在AI系統的訓練資料中蓄意加入有害或錯誤的資料,影響模型訓練結果,導致人工智慧系統產出錯誤推論或決策。 2. 模型混淆(Model Obfuscation):攻擊者有意識地隱藏或掩飾AI模型的內部運作特徵與行為,以增加系統漏洞、引發混亂或防礙資安管理,可能導致AI系統的安全性與穩定性受損。 3. 輸入間接指令(Indirect Prompt Injection):藉由輸入經精心設計的指令,使人工智慧系統的產出未預期、錯誤或是有害的結果。 為了提升實務守則可操作性,實務守則涵蓋了人工智慧生命週期的各階段,並針對相關角色提出指導。角色界定如下: 1. 人工智慧系統開發者(Developers):負責設計和建立人工智慧系統的個人或組織。 2. 人工智慧系統供應鏈(Supply chain):涵蓋人工智慧系統開發、部署、營運過程中的的所有相關個人和組織。 實務守則希望上述角色能夠參考以下資安原則,以確保人工智慧系統的安全性與可靠性: 1. 風險評估(Risk Assessment):識別、分析和減輕人工智慧系統安全性或功能的潛在威脅的過程。 2. 資料管理(Data management):確保AI系統整個資料生命週期中的資料安全及有效利用,並採取完善管理措施。 3. 模型安全(Model Security):在模型訓練、部署和使用階段,均應符合當時的技術安全標準。 4. 供應鏈安全(Supply chain security):確保AI系統供應鏈中所有利益相關方落實適當的安全措施。 「人工智慧網路資安實務守則」藉由清晰且全面的指導方針,期望各角色能有效落實AI系統安全管控,促進人工智慧技術在網路環境中的安全性與穩健發展。
美國聯邦政府規劃專案計畫,推動機構建築能源效率政策目標去年(2011)十二月,歐巴馬總統簽署的備忘錄(Presidential Memorandum)中要求聯邦政府機構在未來的兩年間可以在建物能源效率的提升上,達成至少2億美元的目標,而在今年(2012)5月2日,各聯邦政府機構終於完成其第一階段的任務,也就是完成額度分配的任務,由農業部、商業部、國防部、司法部、能源部、國土安全局等各聯邦政府機構,共同參與並完成這2億目標額的分配。 在能源效率的提升計畫中,各機構預計簽訂總共約21億的成效式合約(performance-based contract),用以支付其改善能源效率上所需的經費,其中已完成超過1億美元節能績效保證契約(Energy Savings Performance Contracts ,ESPCs) 和節能服務契約(Utility Energy Savings Contracts ,UESCs)的簽訂,另外還有約12億美元的項目正在開發中,預計於2013年前完成所有21億美元契約的簽訂,以呼應總統要求強力發展能源效率氣勢。 節能績效保證契約是與ESCO(energy service company)簽訂的一種合約,合約中,聯邦政府不需要國會事先撥款支付資金成本予ESCO,而是由ESCO在經過諮詢後,擬定符合聯邦機構需求的節約能源計畫,並支付所需的資金支出,但是ESCO將會保證計畫中所節省下來的能源支出,足以支付契約期間內的支出並取得獲利為報酬,契約期間最長可達25年;節能服務契約則是供電業者提供更有效率的供電方式,並由業者編列資金來支付計畫的資金支出,而業者將會由契約期間內所節省來的電費獲得回報。 同時,在這些聯邦政府機構聯合領導下,60個主要企業的CEO、大學、市長和勞工領袖等皆代表不同單位,共同做出改善估計約1.6億平方英尺商業建物的能源效率,例如一些大型賣場正著手於改善他們的照明設備以及為他們的冷凍設備裝上門,一些醫院以及大學也意識到能源效率的改善將會為他們節省大筆的支出並且為病患或是學生提供更好的服務 除此之外,一些金融機構亦作出2億美元的資金承諾,由於能源效率改善的花費對一些私人機構而言,是一個主要的限制,因此花旗銀行以及一些金融服務業者以直接投入資金的方式,或是針對不動產所有權人的資金需求設計出相關的金融服務。 以上這些行動除了在於達成能源效率改善的目的,滿足歐巴馬總統設定於2020年前減少20%的能耗目標,重要的是同時也預計將創造出高達11萬4千個工作機會,這些都是歐巴馬政府於去年2月提出的「建物改善」(Better Building)倡議中的一部分,也屬於美國政府現在「刻不容緩」的政策執行重點(We Can’t Wait execution action)項目之一。
法學新論:從產業全球化佈局觀點論我國研發成果管理之法制政策