馬來西亞於2010年6月即通過個人資料保護法,延宕經年,該法終於自2013年底開始正式施行,而數項配套規範亦同步施行。前個資保護部門首長Abu Hassan Ismail則被任命為新設之個資保護專員,受通訊及多媒體部部長之指揮監督。
從規範內容架構觀察,馬國此部個資法之範疇堪稱恢弘,不但包括了諸多的實質行為規定,例如,在行為規範的面向上,馬國個資法要求其所謂的資料使用者(data user) 必須遵守多項個資保護原則並尊重當事人權利;此外,該法亦有不少與個資保護相關之組織及程序規則,例如,該法設有行政救濟法庭,如對個資保護專員之決定有所不服者,即可在此提出救濟。惜該法之適用對象不包括公部門,且在適用情形方面,除排除了純粹因個人或家庭目的而蒐集、處理、利用個人資料外,亦針對諸多情形分別排除該法所設之不同個資保護原則之適用,且更賦予個資保護專員另行指定排除適用情形之權限,因而除將相當程度限制該法影響範圍外,並使該法之適用與發展增加許多不確定之因素。
美國著作權局發布AI著作權報告第三部分:生成式AI訓練-AI訓練是否構成合理使用? 資訊工業策進會科技法律研究所 2025年06月04日 美國著作權局於2025年5月發布著作權與AI第三部分報告之預出版本 (Copyright and Artificial Intelligence Part 3: Generative AI Training pre-publication version)[1],該報告重點為生成式AI訓練資料與著作權之關係,彙整各方意見並分析現行法制之挑戰及修改方向,目前發布之版本為預出版本,該報告說明將於近期發布最終確認版,預期其結論與實質內容並不會有修改。 壹、事件摘要 美國著作權局自2023年起即開始對AI所引發之著作權法律及政策問題進行研究,同年8月著作權局發布著作權及AI諮詢通知(Comments on Artificial Intelligence Notice of Inquiry, NOI),徵集各界對AI著作權議題之意見,著作權局亦針對相關議題舉辦多場公聽會及研討會協助意見之蒐集[2]。NOI發布後蒐集到之意見經著作權局整理分析,於2024年7月起發布AI著作權報告,第一部分為數位仿造,第二部分於2025年1月發布為就AI作品之著作可保護性之分析,而同年5月所發布之第三部分則聚焦於生成式AI之訓練。 生成式AI於訓練過程可能大量使用受著作權保護之作品,此份報告針對訓練過程可能涉及之著作權問題進行分析,主要說明AI模型訓練過程中使用受著作權保護作品是否可構成合理使用。 貳、重點說明 一、生成式AI模型訓練及模型權重對重製權之侵害 使用受著作權保護作品進行AI模型訓練涉及著作權中之重製,除非開發者能提出授權或其他合理抗辯如合理使用等,否則可能對一項或多項著作權利構成初步侵權(Prima Facie Infringement)。AI開發者於模型訓練階段會進行多次作品複製,包含下載作品、於儲存媒介間轉換、將作品進行格式化或製作副本等[3],模型訓練過程中暫時複製之作品亦有可能因其存在於時間足夠而構成重製權之侵害[4]。 在特定情形下,模型權重(model weights)[5]之複製亦可能構成重製權之侵害。訓練過程可能使模型權重包含著作權作品,而若第三方複製了包含著作權作品之模型權重,即便其未參與模型之訓練,亦可能構成初步侵權[6]。若模型能在未經外部輸入之情形下產出與訓練範例相似之內容時,表示此範例必以某種形式存在於模型權重中,故此模型權重之複製極有可能侵犯著作重製權[7]。換言之,不僅開發者有可能因模型權重之複製侵害著作權人之權利,部署、使用等第三方若複製模型權重亦有可能構成對重製權之侵害。 著作權局指出,模型權重究竟是否會構成重製權或甚至衍生作品之侵權,須判斷該模型權重是否保留與作品受權利保護部分實質相似之內容,僅有在實質相似之情形下,模型權重之複製才可能構成侵權[8]。 二、合理使用 對著作權作品之合理使用可做為作品重製權的抗辯,著作權局於報告中就不同因素分析AI使用著作權作品進行訓練是否得主張合理使用。AI於訓練過程中會有多次複製行為,惟在判斷AI模型訓練是否為對作品之合理使用,仍須視整體使用情境進行判斷[9]。 (1) 作品轉化性須視模型目的及佈署判斷 報告中分析作品之轉化性(transformativeness)[10],AI訓練使用作品是否具有轉化性並非絕對,而是依據模型最終之功能及佈署有程度上之區別,須依個案判斷。若模型之訓練目的為用於研究或封閉系統,則該模型具高轉化性;若其目的是生成與訓練用作品實質相似之結果時,不具轉化性。多數模型之轉化程度會落在前述兩極端之中間,如模型使用特定類型之作品進行訓練,用以生成使用目的與原作相同之內容時,即便其生成內容未有實質相似,頂多僅為有限度之轉化(modestly transformative)[11]。AI開發商得於其系統設置防護措施,限制模型複製受著作權保護作品之節錄內容,使生成內容之目的與原作品不同,此措施能使模型訓練更具轉化性[12]。 有論者認為,使用受著作權保護作品進行AI模型訓練並非出於表達目的,且近似人類學習,因此實質上應是具有轉化性的,著作權局否定了前述兩種說法。報告中說明,語言模型於訓練時所吸收的內容包含文句、段落及文件之排列選擇,並非單純僅吸收其單字含意,且所生成之模型是被用作創造表達性內容,故不得謂AI模型為非表達性目的[13]。其次,針對人類學習觀點,報告首先闡明,學生基於學習目的亦不得以合理使用為由複製整本著作,因此人類學習並不得直接作為合理使用之抗辯。生成式AI之訓練能迅速分析並生成完美之作品,此非如同人類經學習後會產出具個別人格特質之結果,故著作權局不同意AI模型之訓練為與人類學習相同具有轉化性之論點[14]。 (2) 受著作權保護作品之表達性 AI訓練所使用之受著作權保護作品若具較高創作或表達性,如小說、電影等,其著作權比其他作品如電腦編碼等功能性作品更接近著作權之保護核心。而AI模型訓練來源多元,因此判斷上仍須視個案模型及作品而定。 (3) 使用作品之合理比例 AI模型訓練需大量複製受著作權保護作品,於判斷其複製比例是否合理時,係判斷模型訓練所複製之部分對於受著作權保護作品之數量及重要性使否合理[15]。作品使用之合理性,須考量重要性以及數量,若模型僅使用小部分作品做訓練,但該部分為著作權作品之核心部分,此使用並不一定合理。 在使用完整作品層面,生成式AI較一般搜尋引擎更不具合理性,生成式AI所提供之資訊並非僅限於其訓練資料庫中所複製作品資料。然而,許多生成式AI之訓練方式必須使用完整作品進行訓練,因此,著作權局指出,雖開發者使用完整作品進行訓練與合理使用相悖,但若其訓練具有轉化性目的(transformative purpose),並且有必要透過大量作品之訓練以提升模型效能時,則使用整部作品進行訓練可能被認為合理[16]。換言之,使用完整作品進行訓練合理與否須連同其使用必要性及訓練目的一併考量。 (4) 影響原作品之潛在市場或價值 報告中點出三項生成式AI訓練可能造成的市場危害。 A 銷售損失(lose sale):權利人因潛在消費者選擇AI複製創作取代原作,而失去收入。 B 市場稀釋 (market dilution):AI生成內容之速度以及規模對訓練資料中同類作品之市場造成稀釋風險,原作者將更難銷售其作品亦將使消費者更難找到真人創作之作品[17]。AI所生成風格相似之作品亦會導致市場稀釋,風格非為著作權所保障之方為,惟若AI生成與作品風格相似之內容,即便未有實質相似,但消費者可能因此難以分辨AI創作與真人作者,將使AI作品與原作者之作品於市場上直接競爭而影響原市場[18]。 C 喪失授權收入機會 (lost licensing opportunities):權利人本可就其作品於市場上有授權收入之機會,但因AI未經授權使用作品進行訓練而喪失該部分收入[19]。 三、 授權使用 對於AI自願授權之情形於近年越來越普遍,報告亦肯認自願授權之可行性,雖自願授權可行,且已有開發商開始實施,惟對於完全滿足AI產業之需求仍存有疑義[20]。該報告認為,即便現階段自願性授權仍為發展中之制度,但該制度確實能避免使用著作權作品之不確定性。著作權局認為應讓自願性授權制度於授權市場於無政府干預情形下繼續發展,若未來於特定類型作品中出現失靈情形時,再考慮進行擴大集體授權等干預措施[21]。 參、事件評析 AI訓練使用著作權保護作品是否可以合理使用作為抗辯為近年AI發展下著作權高度討論問題之一。目前美國各地法院中有40多件相關案件正在進行審理,然就此報告之結論觀之,其並未對AI訓練是否可作為合理使用給予統一解答,合理使用與否仍須視個案而定。如同報告結論所提及,AI訓練過程中,使用受著作權保護作品可能具有轉化性,但是否足以構成合理使用,仍須視其所使用之作品、來源以及目的等個案因素而定[22]。AI訓練於著作權仍存在一定程度之不確定性。 值得注意的是,雖報告並未明示AI訓練使否為合理使用著作權作品,惟其立場似乎更偏向有利於著作權利人。例如報告中於轉化性認定具有灰色地帶,開發商是否能主張合理使用仍需於後續由法院個案認定。此外,報告中提及市場稀釋理論,目前尚未有法院採用,對合理使用之認定較為嚴格,即使未有實質相似之生成內容亦有可能因影響市場競爭被視為非合理使用,可見該理論對著作權利人之權利保障。 同時著作權局亦正向看待產業界透過自願性授權進行作品訓練之方法,雖該制度於AI訓練上尚未為一完善制度,但確實地授權制度能同時促進產業發展並保護著作權[23]。目前實務上亦是以此種作法解決合理使用之困境,但授權制度仍有待市場持續發展完善制度以確保能符合AI訓練之需求。 美國著作權局之報告雖對AI使用著作權保護作品進行訓練進行分析及說明,惟其結論仍是認為判斷上需依照個案分析。目前國際上尚未有對AI合理使用之實際定論,自願性授權仍為產業界所使用之方法。我國著作權法亦未對AI訓練之合理使用有說明,國際上將會如何發展仍有待觀察。 資策會科法所創智中心致力於著作權相關科技法律研究,本中心將持續關注相關議題並更新動態。 本文為資策會科法所創智中心完成之著作,非經同意或授權,不得為轉載、公開播送、公開傳輸、改作或重製等利用行為。 [1]U.S. Copyright Office Copyright and Artificial Intelligence, Part 3: Generative AI Training pre-publication version, https://www.copyright.gov/ai/Copyright-and-Artificial-Intelligence-Part-3-Generative-AI-Training-Report-Pre-Publication-Version.pdf [2]U.S. Copyright Office, Copyright Office Issues Notice of Inquiry on Copyright and Artificial Intelligence, https://www.copyright.gov/newsnet/2023/1017.html (last viewed: 2025/05/19) [3]supra note 1, at 26. [4]Id. at 27. [5]AI模型之建立仰賴神經網,主要功能為將輸入資料轉換為輸出資料。神經網路之運作方式係透過大量於訓練過程中產生之參數進行運案,而該些參數即為「權重」(weights)。 [6]Id. at 28. [7]Id. [8]Id. at 30. [9]Id. at 36-37. [10]轉化性係指新作品加入新元素,具有與原作不同目的或性質,且以新表達、意義或訊息改造原作。並且新作品於市場上較不會取代原作。 [11]Id. at 46. [12]Id. [13]Id. at 47. [14]Id. at 48. [15]Id. at 54. [16]Id. at 60. [17]Id. at 65. [18]Id. at 65-66. [19]Id. at 66-67. [20]Id. at 85. [21]Id. at 106. [22]Id. at 107. [23]Id. 本文同步刊登於TIPS網站(https://www.tips.org.tw)
新加坡交易所(SGX)正式推出SPAC上市框架由新加坡政府基金淡馬錫(Temasek)支持的「特殊目的收購公司」(Special Purpose Acquisition Company, SPAC)「Vertex Technology Acquisition Corp.」已於2022年1月20日在新交所掛牌上市,為首家在新加坡上市之SPAC。後續還有由國際發起人發起的「 Pegasus Asia」已於2022年1月21日上市,以及由新加坡基金 Novo Tellus Capital Partners 設立之「Novo Tellus Alpha Acquisition」於2022年1月27日上市。 由於美國2020年、2021年已有許多欲上市之公司採用SPAC制度上市,同時在美國紐約證券交易所(NYSE)及那斯達克(Nasdaq)均獲得巨大的成功,因此各國交易所開始摩拳擦掌,紛紛著手修正上市規則允許SPAC制度以吸引優良企業。 新加坡交易所(SGX)最初於2021年3月底時發布SPAC上市框架諮詢文件,並於同年9月2日公布該諮詢文件之回覆意見及結論,並同時修正主板上市規則,允許SPAC於同年9月3日在新加坡主板上市。 SGX說明超過80名受訪者(包含金融機構、投資銀行、私募股權和風險投資基金、企業、一般投資人、律師、會計師和其他利益相關者)回覆SPAC上市框架諮詢文件,該回覆率為近年來之最高,可見SPAC制度之熱潮。 新加坡SPAC上市框架規定SPAC公司須符合以下條件: SPAC公司須至少擁有1.5億新加坡幣市值; SPAC公司須於IPO後24個月內完成收購未上市公司,僅於符合特定條件下最多再延長12個月; SPAC公司收購未上市公司時,需經過50%以上獨立董事同意及50%以上獨立股東同意; 所有獨立股東均享有異議股東股份收買請求權; 贊助人需至少認購IPO發行股份/認股權證總額之2.5%-3.5%(具體比例將依據SPAC公司市值判斷) 於IPO後至SPAC公司收購未上市公司前,禁止贊助人讓售所持有之股份 後續新加坡SPAC發展及併購值得繼續觀察。
美國國會眾議院發布數位資產市場結構法案討論稿,期望建立明確監管框架隨著加密資產與區塊鏈技術的迅速發展,美國國會眾議院於2025年5月5日提出《數位資產市場結構法案討論稿》(Digital Asset Market Structure Discussion Draft),旨在制定新法並同時修改多部美國聯邦金融法規,以建立數位資產的清晰監管框架,期促進美國數位資產市場創新、投資人保障與維護市場公平,其討論重點如下: 1. 數位資產定義與監管職權劃分:於證券法(Securities Act)與商品交易法(Commodity Exchange Act)新增大量關於數位資產的定義,並明確劃分證券交易委員會(Securities and Exchange Commission, SEC)與商品期貨交易委員會(Commodity Futures Trading Commission, CFTC)的監管界線。 2. 去中心化金融(Decentralized Finance, DeFi)、穩定幣與成熟區塊鏈系統的豁免機制:成熟區塊鏈系統、受核准的支付型穩定幣(Permitted Payment Stablecoins)與特定DeFi活動(如:驗證交易、提供用戶介面等)得排除法令適用,為區塊鏈項目提供更彈性的監管途徑。 3. 市場參與者註冊要求:規定數位商品交易所、經紀商、交易商之市場參與者,應向CFTC註冊之相關要求,遵循包含資本規範、客戶資金隔離、交易監控、報告義務等原則,以提升市場透明度和投資者保護。 4. 數位資產領域研究:要求SEC與CFTC應設立金融創新辦公室(Offices of Financial Innovation) 和創新實驗室(LabCFTC),進行多項關於數位資產領域的研究,包含DeFi、金融市場基礎設施之改善等,以提供監管機構新興技術資訊。
澳洲政府發布「國家 AI 計畫」 將採用科技中立的AI治理模式澳洲工業、科學及資源部(Department of Industry, Science and Resources)於2025年12月2日發布「國家AI計畫」(National AI Plan),擘劃了澳洲至2030年的AI發展藍圖,將「掌握機遇」、「普及效益」與「確保人民安全」列為三大發展方向。該計畫將透過基礎建設投資、人才培育、產業支持,以及強化監管能力等途徑,打造一個更具競爭力、包容性與安全性的 AI 生態系統。 國家AI計畫的另一個重點在於,澳洲政府打算透過現有的法律監管架構治理AI,而不另立AI專法。此舉是回應澳洲生產力委員會(Productivity Commission)於8月提出之建言:政府在推動創新與訂定規範時必須取得平衡,應暫緩推動「高風險 AI 的強制護欄(mandatory guardrails)」,僅有在現行制度無法處理AI衍生之危害時,才有必要考慮制定 AI 專法。 據此,國家AI計畫指出,面對AI可能造成的危害,現有制度已有辦法進行處理。例如面對使用AI產品或服務的爭議,可依循《消費者保護法》(Australian Consumer Law)取得權利保障;AI產品或服務的風險危害,亦可透過《線上安全法》(Online Safety Act 2021)授權,制定可強制執行的產業守則(enforceable industry codes)來應對。澳洲政府未來也將推動《隱私法》(Privacy Act 1988)修法,意欲在「保護個人資訊」與「允許資訊被使用及分享」之間取得適當平衡。 同時,由於採用分散式立法的關係,澳洲特別成立「AI 安全研究院」(Australian AI Safety Institute, AISI),以強化政府因應 AI 相關風險與危害的能力。AISI將協助政府部門內部進行監測、分析並共享資訊,使部門間能採取即時且一致的治理政策。 澳洲政府曾在2024年9月研議針對高風險AI進行專門的監管,但因擔心過度立法恐扼殺AI發展轉而採用「科技中立」的監管方式,以既有法律架構為基礎推動AI治理。此與歐盟的AI治理邏輯大相逕庭,未來是否會出現現行制度無法處理之AI危害,抑或採用現行法制並進行微調的方式即可因應,值得持續觀察。