美國參議院認為健康資通訊科技(Healthy Information Technology)的創新與快速發展已經漸使現行法制不合時宜,美國食品藥物管理局(The US Food and Drug Administration)過度嚴格管制健康資通訊科技產品,甚至以法律強加健康資通訊業者不必要的負擔,恐抹殺新產業的創新能量,因此有必要對相關管制法規予以鬆綁。遂立法提案重新定義健康相關軟體,稱為「防止過度規範以促進照護科技法案」(The Prevent Regulatory Overreach To Enhance Care Technology Act of 2014,以下簡稱PROTECT Act)。
健康資通訊科技是目前創新與發展最快的美國產業。單以健康資通訊科技產業中,與健康相關的手機應用程式(application,APP)之開發,在全球經濟已創造數億美金的產值,在美國一地更提供了將近50萬份的工作機會。然而,在現行法制中食品藥物管理局認為健康相關的手機應用程式等軟體被廣泛應用於醫療行為的資訊蒐集,因此應當被視為醫療行為的一環。依據聯邦食品藥物及化妝品法(The Federal Food, Drug and Cosmetic Act,FD&C Act)之規定,健康資通訊科技產品被界定為醫療器材(Medical Devices),而健康管理APP、行事曆APP、健康紀錄電子軟體等低風險產品亦包含在內,都必須嚴格遵守醫療器材相關行政管制。在PROTECT Act中將風險較低的健康資通訊科技產品重新定義為臨床軟體(Clinic Software)與健康軟體(Healthy Software)兩種態樣,其共通點在於明白區分出單純提供市場使用,不影響人體或動物醫療的健康資訊蒐集與直接提供實際臨床診斷,如放射線影像或醫療器材軟件的差異,PROTECT Act所定義之臨床軟體與健康軟體即屬於前者,故排除適用FD&C Act中醫療器材之定義範圍,得免除相關行政管制。
本文為「經濟部產業技術司科技專案成果」
歐盟執委會於2021年7月14日公布一系列有關再生能源、能源效率、交通運輸、財稅政策、碳交易機制等議題之立修法提案。提案目的是希望整體制度能更加有助於歐盟氣候法(European Climate Law)中所設定減碳目標達成,於2030年減少相當於1990年55%的排碳量,故被稱為「Fit for 55」。 執委會為達成減碳目標,具體提案內容如下: (1)能源效率:修正《能源效率指令》(Energy Efficiency Directive),設定2030年能源消耗減少36~39%目標,並要求每年更新公部門建物至少3%,以提升能源效率; (2)再生能源:修正《再生能源指令》(Renewable Energy Directive),目標增加2030年的再生能源使用比例達現在的40%; (3)交通運輸:於陸路運輸,透過修正《小客車與輕型商用車新車二氧化碳排放規則》(Regulation setting CO2 emission standards for cars and vans),針對出廠新車制定2030年汽車55%、廂型商用車50%、2035年所有新車100%之減碳目標,並配合《替代燃料基礎設施規則》(Alternative Fuels Infrastructure Regulation)之修正,明訂高速公路每60公里設置充電站、150公里設置加氫站,以提供低碳運具之需求;於空運,歐盟航空永續燃料倡議(ReFuelEU Aviation Initiative),要求航空能源供應商增加永續燃料比例;針對海運,則透過歐盟海事燃料倡議(FuelEU Maritime Initiative),針對結合永續燃料與零排放科技的結果進行模擬,並設定最高排碳量。 (4)財稅政策:制定《碳邊境調整機制》(Carbon Border Adjustment Mechanism),針對被選定的目標產品(包含:水泥、電力、肥料、鋼鐵、鋁)訂定碳價格,於其自境外輸入時課徵稅費,以解決碳洩露問題;修正《能源稅指令》(Energy Taxation Directive),調整能源相關產品稅收計算方式、刪除不合時宜的規定,透過稅收調整能源使用之誘因,以貼近減碳需求。 (5)碳交易機制:修正《溫室氣體排放交易指令》(EU Emission Trading System Directive)擴大碳交易機制適用對象,納入海運、燃料供應中心,同時要求會員國應將碳交易所得,全數用於氣候能源相關計畫,以補足當前財務上的缺口。 總結而言,歐盟「Fit for 55」政策為使整體制度更符合2030年55%的減碳目標,透過個別部門減碳目標之設定、替代燃料之推動、財政誘因之調整等三種手段,希望多方面對減碳做出貢獻,以加速減碳的進程。
美國地方法院裁定產品專利資訊標示不實之罰金計算以該產品之最高售價為基礎繼美國聯邦巡迴上訴法院於2009年底於The Forest Group Inc v. Bon Tool Co. 一案中將美國專利法35 U.S.C. § 292條中關於不實專利標示(false patent marking)的罰金計算方式認定為罰金之計算是以每一個標示錯誤專利資訊的產品為基礎,並將原案發回地方法院(the U.S. District Court for the Southern District of Texas)重審後,地方法院於今年4月27日裁定基於專利法第292條具懲罰性之本質,針對標示錯誤或標示無效專利號之產品之罰金應以該產品之最高售價而非被告基於販售該產品所獲得之利潤或經濟利益來計算。 於此案中,The Forest Group產品之售價介於美金 $103至 $180元間,法院因而裁定處以The Forest Group每一標示錯誤專利資訊產品 $180元之罰金。 Atlas 法官提到藉由將標示不實專利資訊者處以該產品之最高售價之罰金,The Forest Group所需賠償之罰金將超過其藉由販售該產品所獲取之利益,達到第292條遏制之目的。 預計此案之判決將對其他地方法院於處理類似案件之判定產生引響,尤其對那些將錯誤專利資訊標示在大量產品上的被告而言。此外,正如各界所預料,繼去年聯邦巡迴上訴法院對第292條提出罰金計算基礎之解釋後,提起相關訴訟案件之數量已大量提升,至今已累積約140案。另,聯邦巡迴上訴法院亦剛於6月10日於Pequignot v. Solo Cup 一案中針對標示過期專利、舉證責任等與第292條相關之爭議做出解釋,後續效應直得企業持續關注。
美國聯邦法官裁決AI「訓練」行為可主張合理使用美國聯邦法官裁決AI「訓練」行為可主張合理使用 資訊工業策進會科技法律研究所 2025年07月07日 確立我國資料創新利用的法制基礎,建構資料開放、共享和再利用的各項機制,滿足民間及政府取得高品質、可信任且易於利用資料的需求,以資料提升我國數位發展的價值,並強化民眾權利的保障,我國於2025年6月16日預告「促進資料創新利用發展條例」,擬推動資料基礎建設,促進更多資料的釋出。 AI發展領先國際的美國,近日首次有聯邦法院對AI訓練資料表達肯定合理使用看法,引發各界關注[1]。我國已開始著力於AI發展所需的資料流通與有效利用,該判決將有助於啟示我國個人資料、著作資料合法使用之法制因應研析。 壹、事件摘要 2025年6月23日美國加州北區聯邦地方法院(United States District Court for the Northern District of California),威廉·阿爾斯法官(Judge William Alsup)針對Andrea Bartz、Charles Graeber、Kirk Wallace Johnson這三位美國作家,對Anthropic公司訓練大型語言模型(Large Language Model, LLM)時使用受其等著作權保護書籍一案,作出指標性的簡易裁決(summary judgment)[2]。 此案被告掃描所購買的實體書籍,以及從盜版網站複製取得的受著作權保護的書籍,儲存在其數位化、可搜尋的檔案中,用來訓練其正在開發的各種大型語言模型。原告主張被當開發Claude AI模型,未經授權使用大量書籍作為訓練資料的行為,為「大規模未經授權利用」。法院則以四要素分析架構,支持合理使用抗辯(Fair Use Defense),強調AI訓練屬於技術發展過程中不可或缺的資料利用,AI公司於模型訓練階段使用著作權書籍,屬於「合理使用」(Fair Use),且具「高度轉化性」(Highly Transformative),包括將購買的實體圖書數位化,但不包括使用盜版,也不及於建立一個永久性的、通用目的的「圖書館(library)」(指訓練資料集)。 貳、重點說明 依美國著作權法第107條(17 U.S.C. § 107)規定,合理使用需綜合考量四要素,法官於本案中認為: 一、使用的目的與性質—形成能力具高度轉化性 AI模型訓練的本質在於學習語言結構、語意邏輯,而非單純複製或重現原著作。AI訓練過程將大量內容作為輸入,經由演算法解析、抽象化、向量化,最終形成轉個彎創造出不同的東西 (turn a hard corner and create something different) 的能力,屬於一種「學習」與「再創造」過程。AI訓練的目的並非為了重現原著作內容,而是為了讓模型具備生成新內容的能力。這種「轉化性」(transformative use)極高,與單純複製或替代原著作的行為有明顯區隔[3]。 另外訓練過程對資料做格式變更本身並未增加新的副本,簡化儲存並實現可搜尋性 (eased storage and enabled searchability),非為侵犯著作權人合法權益目的而進行,亦具有轉化性 (transformative)。原告就所購買的紙本圖書,有權按其認為合適的方式「處置 (dispose)」,將這些副本保存在其資料集中,用於所有一般用途[4]。 二、受保護作品的性質--高度創作性非關鍵因素 法院認同原告所主張的書籍是具有高度創意(creative)的作品理應享有較強的保護。但法院亦認為合理使用的四個要素,須為整體衡量,儘管作品本身具有較高的創意性,但由於使用行為的高度轉化性以及未向公眾直接重製原作表達,整體而言,法院認定用於訓練 LLM 的行為構成合理使用[5]。 三、使用的數量與實質性--巨大數量係轉化所必要 法院認為AI模型訓練需大量內容資料,甚至必須「全書」輸入,看似「大量使用」,但這正是AI技術本質所需。AI訓練是將內容進行抽象化、數據化處理,最終在生成新內容時,並不會原封不動重現原作。所以,雖然訓練過程涉及全部作品,但AI模型的輸出並不會重現原作的具體表達,這與單純複製、重製作品的行為有本質區別[6]。 四、對潛在市場或價值的影響 本案法院明確指出,人工智慧模型(特別是原告的Claude服務)的輸出內容,通常為全新生成內容,並非原作的精確重現或實質模仿冒,而且Claude服務在大型語言模型(LLM)與用戶之間加入額外功能,以確保沒有侵權輸出提供予用戶。因此,此類生成內容不構成對原作的替代,不會削弱原作的銷售市場,也不會造成市場混淆,而且著作權法保護的是原創而非保護作者免於競爭[7]。 不過即便法院支持被告的合理使用主張,肯定AI訓練與著作權法「鼓勵創作、促進知識流通」的立法目的相符。但仍然指出提供AI訓練的合理使用(Fair Use)不代表資料來源的適法性(Legality of Source)獲得合法認定。沒有任何判決支持或要求,盜版一本本來可以在書店購買的書籍對於撰寫書評、研究書中的事實或創建大型語言模型 (LLM) 是合理必要 (reasonably necessary) 的。此類對原本可(合法)取得的圖書進行盜版的行為,即使用於轉化性使用並立即丟棄,「本質上」、「無可救藥地」(inherently、irredeemably)構成侵害[8]。 參、事件評析 一、可能影響我國未來司法判決與行政函釋 我國於現行著作權法第65條規定下,須於個案交予我國法院認定合理使用主張是否能成立。本案判決為美國首個AI訓練行為可主張合理使用的法院見解,對於我國法院未來就對AI訓練資料取得的合法使用看法,顯見將會產生關鍵性影響。而且,先前美國著作權局之報告認為AI訓練過程中,使用受著作權保護作品可能具有轉化性,但利用結果(訓練出生成式AI)亦有可能影響市場競爭,對合理使用之認定較為嚴格,而此裁定並未採取相同的見解。 二、搜取網路供AI訓練資料的合理使用看法仍有疑慮 依據本會科法所創智中心對於美國著作權法制的觀察,目前美國各地法院中有多件相關案件正在進行審理,而且美國著作權局的合理使用立場較偏向有利於著作權利人[9]。相同的是,均不認同自盜版網站取得的資料可以主張合理使用。然而AI訓練所需資料,除來自於既有資料庫,亦多來自網路搜取,如其亦不在可主張範圍,那麼AI訓練的另一重要資料來源可能會受影響,後續仍須持續觀察其他案件判決結果。 三、有效率的資料授權利用機制仍是關鍵 前揭美國著作權局報告認為授權制度能同時促進產業發展並保護著作權,產業界正透過自願性授權解決作品訓練之方法,雖該制度於AI訓練上亦尚未為一完善制度。該裁決也指出,可合理使用資料於訓練AI,並不代表盜版取得訓練資料可以主張合理使用。這對於AI開發而言,仍是須要面對的議題。我國若要發展主權AI, 推動分散串接資料庫、建立權利人誘因機制,簡化資料查找與授權流程,讓AI訓練資料取得更具效率與合法性,才能根本打造台灣主權AI發展的永續基礎。 本文為資策會科法所創智中心完成之著作,非經同意或授權,不得為轉載、公開播送、公開傳輸、改作或重製等利用行為。 本文同步刊登於TIPS網站(https://www.tips.org.tw) [1]相關新聞、評論資訊,可參見:Bloomberg Law, "Anthropic’s AI Book-Training Deemed Fair Use by US Judge", https://news.bloomberglaw.com/ip-law/ai-training-is-fair-use-judge-rules-in-anthropic-copyright-suit-38;Anthropic wins a major fair use victory for AI — but it’s still in trouble for stealing books, https://www.theverge.com/news/692015/anthropic-wins-a-major-fair-use-victory-for-ai-but-its-still-in-trouble-for-stealing-books;Anthropic Scores a Landmark AI Copyright Win—but Will Face Trial Over Piracy Claims, https://www.wired.com/story/anthropic-ai-copyright-fair-use-piracy-ruling/;Anthropic Wins Fair Use Ruling In Authors' AI Copyright Suit, https://www.thehindu.com/sci-tech/technology/anthropic-wins-key-ruling-on-ai-in-authors-copyright-lawsuit/article69734375.ece., (最後閱覽日:2025/06/25) [2]Bartz et al. v. Anthropic PBC, No. 3:24-cv-05417-WHA, Doc. 231, (N.D. Cal. June 23, 2025),https://cdn.arstechnica.net/wp-content/uploads/2025/06/Bartz-v-Anthropic-Order-on-Fair-Use-6-23-25.pdf。(最後閱覽日:2025/06/25) [3]Id. at 12-14. [4]Id. at 14-18. [5]Id. at 30-31. [6]Id. at 25-26. [7]Id. at 28. [8]Id. at 18-19. [9]劉家儀,美國著作權局發布AI著作權報告第三部分:生成式AI訓練-AI訓練是否構成合理使用?https://stli.iii.org.tw/article-detail.aspx?no=0&tp=1&d=9352。
德國聯邦資料保護暨資訊自由官聲明病人資料保護法恐違反GDPR德國聯邦資料保護暨資訊自由官(Der Bundesbeauftragte für den Datenschutz und die Informationsfreiheit,BfDI)Ulrich Kelber教授於2020年8月19日指出,2020年7月3日甫由德國議會通過的病人資料保護法(Gesetz zum Schutz elektronischer Patientendaten in der Telematikinfrastruktur; Patientendaten- Schutzgesetz, PDSG),恐違反歐盟一般資料保護規則(GDPR)。 該法規定自2021年起,健康保險業者必須向被保險人(病人),提供電子病歷(ePA)。而自2022年起,病人有權要求醫生將病人相關資料記錄於電子病歷,包括健檢結果、醫學報告或X光片、預防接種卡、孕婦手冊、兒童體檢手冊、牙科保健手冊等,而被保險人更換健康保險業者時,可要求移轉其電子病歷至新的健保公司。另外,2021年起將可透過手機,下載電子處方並至藥局領取處方藥。2022年1月1日起,將全面強制使用電子處方,病人將可透過智慧手機或平板電腦,決定他人對於電子病歷之近用權限。病人若無手機,可至健保公司查看電子病歷。依照規劃,目前電子病歷的使用仍採自願性。病人可決定保存或刪除哪些資料,以及誰可以近用該文件。自2023年起,被保險人可自願提供電子病歷資料作為研究用途,而因上述研究可處理病人資料之醫師、診所和藥劑師等,有義務確保其資料安全。 BfDI於立法過程中多次強調,在導入電子病歷使用時,病人必須可完全控制自己的資料。而該法規範僅提供病人使用部分設備,例如智慧手機或平板電腦,設定其電子病歷之存取權限,此意謂著將有一段空窗期,病人無法決定其電子病歷中各文件之存取權限。而對於電子病歷中,可否僅開放部分資料供瀏覽或存取,亦受到聯邦資料保護暨資訊自由官質疑。另外,對於無法或不想在手機或平板電腦上使用上述功能的人,本法並未進一步規定,亦即2022年起,上述病人為了能夠檢查或接受醫療,必須強迫病人控制其相關資料,但目前顯然尚缺乏相關配套。此外,以資料保護角度而言,目前電子病歷之認證程序有安全疑慮,尤其是未使用電子健康卡的替代驗證程序尚不夠嚴謹,因此命令相關單位應於2021年5月前完成改善。 電子病歷是對醫療保健改善的重要一步,因此相關健康資料保護需要符合GDPR規範水平。電子病歷雖已逐漸受到認可與重視,惟當前病人資料保護法恐無法完全保護病人資料安全。因此,BfDI將透過監管手段,確保健康保險公司不會因提供電子病歷而違反GDPR。