社交網站Pinterest與Path的商標戰

  由於現在手機、相機拍照風潮盛行,Pinterest 成為一個圖像社交網站大品牌,近期,展開一連串的法律行動,禁止其他公司的使用Pin開頭的商標,成功擊退其他申請人於相同類別,註冊「Pinlets」和「Pintegrate」等商標。

  此外,美國專利商標局允許Pinterest註冊其經設計的「P」商標用於APP的小圖示,但根據TechCrunch報導,因為紅白設計的「P」看起來與另一間公司Path的標誌非常相似,今年七月Pinterest改版,引入了新的介面與動畫,而此動畫非常相似於Path的介面,當用戶點擊螢幕,小圓圖標彈出,指引使用者可採取的行動,Path要求美國專利商標局,延後Pinterest的商標註冊核准。

  另,Pinterest近期也獲得了一場勝利,舊金山美國地方法院裁定,網路蟑螂須為他搶註100個網域名稱的行為,賠償720萬美元予Pinterest。網路蟑螂註冊許多與知名公司相似的網域名稱,而此次由於單一的網路蟑螂,卻擁有100個類似於Pinterest的網域名稱,例如:pinterests.com、pimterest.com 與 pinterost.com,企圖藉此吸引訪客,因此法官認定網路蟑螂構成故意侵權,可能造成Pinterest的商譽受損或被稀釋淡化。

  Pinterest的發言人表示,對於Pinterest的使用者而言,這是一個很好的結果。

相關連結
※ 社交網站Pinterest與Path的商標戰, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=6476&no=57&tp=1 (最後瀏覽日:2026/02/23)
引註此篇文章
你可能還會想看
何謂「證券型代幣發行(STO)」?

  運用區塊鏈技術發行加密貨幣(Cryptocurrency,又稱虛擬貨幣)進行募資,為當前熱門的新創募資手段之一,此種募資方式稱為首次代幣發行(Initial Coin Offering,ICO)。由於ICO過去並未受到監管,其發行也僅有發行人所撰寫的白皮書(Whitepaper)可供參考,投資人與發行人間有相當大的資訊落差,也因此導致以ICO為名的詐騙案件層出不窮。   對此各國監管機關紛紛對ICO進行分類與監管,美國證券交易委員會(SEC)即將加密貨幣區分為效用型代幣(Utility Token)與證券型代幣(Security Token),並將後者納入監管。SEC採用1946年美國聯邦最高法院在SEC v. W.J. Howey Co.案判決中所適用的標準(Howey Test),若「投資人基於對合理報酬的預期,對特定事業進行金錢的投資,且該獲利來自於他方的努力」,即屬於證券型代幣而需要受到監管。   SEC據此對涉及詐欺的ICO案件嚴格執法,並積極輔導非屬詐欺案件依法辦理註冊發行程序。證券型代幣發行(Security Token Offering,STO)即為配合SEC監管規範下,為消除過去對於ICO募資疑慮所產生的法遵解套辦法。對此我國金管會亦積極評估是否將STO的標準引進我國,惟因我國對有價證券之定義與要件,與SEC所採之Howey Test有所不同,而尚在研議當中。

美國國土安全部保護物聯網策略原則簡介

美國國家標準暨技術研究院規劃建立「人工智慧風險管理框架」,並徵詢公眾對於該框架之意見

  美國國家標準暨技術研究院(National Institute of Standards and Technology, NIST)為管理人工智慧對於個人、組織以及社會所帶來之風險,於2021年7月29日提出將建立「人工智慧風險管理框架」(Artificial Intelligence Risk Management Framework, AI RMF)之規畫並徵詢公眾意見,截止日為9月15日,並預計於10月發布正式報告。   依照NIST說明,公眾所建議之人工智慧風險管理框架,可促進人工智慧之可信賴性,其中包含如何應對並解決人工智慧於設計、發展及使用過程中所遭遇之「精確度」(accuracy)、「可解釋性」(explainability)、「偏見」(bias)等議題。此外,上開管理框架預計為非強制性、供企業自願性使用於人工智慧設計、發展、使用、衡量及評估之人工智慧標準。   依現有公眾意見徵詢結果,其中DeepMind公司建議於人工智慧設計初期,必須預先構思整體系統之假設是否符合真正社會因果關係。舉例言之,當設計一套可預測民眾健保需求程度之系統時,如輸入參數僅考量民眾於醫療上的花費,將使僅有可負擔較高醫療費用之民眾被歸類為健保需求程度較高者,從而導致健保制度排擠經濟負擔程度較差之公民,故在設計系統時,應從預先設定之假設事實反面(counter-factual)思考並驗證是否會產生誤差或公平性之問題(例如預先思考並驗證「醫療費用支出較低之民眾是否即可被正確歸類為健保需求度低之民眾」)。惟進行上述驗證需要大量社會資料,因此DeepMind也建議NIST應建立相關機制,使這些社會資料可以被蒐集、使用。   此外,亦有民眾建議管理框架應有明確之衡量方法以及數值指標,以供工程界遵循。同時鑒於人工智慧發展極為快速,未來可能有不同於以往之人工智慧類型出現,故亦建議NIST應思考如何在「建構一套完整且詳細之人工智慧治理框架」與「保持人工智慧治理框架之彈性與靈活性」之間取得平衡。   最後,目前也有許多徵詢意見指出,許多人工智慧治理之目標會相互衝突。舉例言之,當NIST要求人工智慧系統應符合可解釋性,則人工智慧公司勢必需要經常抽取人工智慧系統中之「數據軌跡」(audit logs),惟數據軌跡可能被認為是使用者之個人資料,因此如何平衡或完善不同治理框架下之目標,為未來應持續關注之議題。

日本文部科學省發布產學合作研究成果歸屬合約範本【櫻花工具包】

  日本文部科學省於2002年提出產學合作契約範本,實行以來發現內容缺乏彈性,對於共同提交專利申請的共有專利權人能否進行商業化等研發成果歸屬問題規範不清。為此,2017年3月日本文部科學省科學技術及學術政策局參考英國智財局發布的Lambert toolkit等文件,提出11項合約範本,稱為【櫻花工具包】。   該工具的主要目標是期望產學合作從在意權利共有轉為重視研發成果商業化,提出包括大學或企業單獨擁有研發成果、雙方共有研發成果等多類型的合作契約模式,並解析如何從數種模式中選擇最適合的合約範本,盡可能在產學合作契約簽訂前,事先考量研究成果的商業化策略,從而提高研發成果商業化的可能性。當中建議,在進行模型選擇時需考慮以下因素: 對研發成果的貢獻程度。 智財權歸屬於大學的處理方法。 是否有必要通過大學發布研究成果。 研究成果歸屬(大學擁有、企業擁有、雙方共有)。 雙方是否同意智財權共有。   此外,為了盡可能使研究成果的智財權更廣泛應用,在參考適用範本時,皆應考量研發成果商業化的靈活性,無論智財權歸屬於大學或企業方,都必須滿足以下的條件: 不限制大學後續研究的可能性。 所有的智財權都要適當的努力使其商業化。 研究成果需在約定的期間內進行學術發表。   日本此一工具包之內容對於產學合作研究之推展,提供了更細緻化的指引,或許可為我國推行相關政策之參考,值得持續關注其內涵與成效。

TOP