中國大陸推出「網絡文化經營單位」內容自審制度

  中國大陸文化部於日前頒布「網絡文化經營單位內容自審管理辦法」,要求「網絡文化經營單位」配置內容審核人員、建立內容管理制度。就其提供的數位産品、內容服務進行自我審核,以確保內容之合法性。

  據中國大陸文化部表示,本次辦法的制定,亦是為了落實其國務院轉變政府職能、簡政放權的政策方向。特別在網路音樂、行動遊戲上,期待能透過企業自律機制,達到市場的有效管理。然而,由辦法中規定「按照法規規章規定應當報文化行政部門審查或者備案的網絡文化産品及服務,自審後應當按規定辦理」看來,此項「內容自審機制」暫時不會取代任何現有審批、備案制度。至於未來運作經驗的累積,相關規範是否會有所調整,以確實達到行政審批事項的下放、簡化目標,仍有待持續追蹤觀察。

  此辦法預計於2013年12月1日起施行。未來相關內容審核工作,須透過經中國大陸文化行政部門培訓、考核,取得「內容審核人員證書」的人員進行。同時,在內容管理制度上,企業必須規範內容審核工作職責、標準、流程,保障內容審核人員獨立審核權限,並在內容管理制度完成制定後,報請所在地文化行政部門備案。對於台灣業者而言,在辦法施行後,應留意其合作之大陸「網絡文化經營單位」,是否符合上述規範,以避免對其產品拓展產生不利影響。

相關連結
※ 中國大陸推出「網絡文化經營單位」內容自審制度, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=6477&no=57&tp=1 (最後瀏覽日:2026/01/27)
引註此篇文章
你可能還會想看
美國USPTO建議加強非法定重複專利之期末拋棄聲明,避免藥物專利叢林

美國專利商標局(United States Patent And Trademark Office, USPTO)於2024年5月10日提議37 C.F.R §1.321修法草案並徵求公眾意見,旨在針對「非法定重複專利」(Nonstatutory-type double patenting)加強專利權「期末拋棄聲明」(Terminal Disclaimer)之要求,以減輕專利叢林現象。 專利權期末拋棄聲明係為避免專利申請人對於申請中,或已取得專利權之前申請案,利用些微變化再次申請專利,構成非法定重複專利,藉此延長專利期限。故現行規定要求於後案申請時應聲明專利權期限與前申請案同時到期,否則將不核准專利之申請。 USPTO提議於聲明中新增一項要求,亦即申請人應聲明後案申請之專利未藉由期末拋棄聲明直接或間接地綁定無效專利,否則同意所申請之專利無法執行(enforceable)。換言之,與後案申請專利所綁定的前案專利,若已被美國聯邦法院或USPTO判定為不具有專利性、專利無效,或是因技術實行上困難而放棄專利者,則透過專利權期末拋棄聲明綁定之專利將全部無法執行。藉此盼能有效去除產業競爭對手間濫用專利制度而建立龐大專利組合之行為模式,並促進研發創新和公平競爭。 此項修法草案被美國法學界認為是針對「藥品專利」而來,亦即USPTO欲藉此回應美國拜登政府致力打擊藥價之政策,並減輕長期受到關注之藥品專利叢林現象,以促進學名藥進入市場,達到降低藥品價格之目的。

歐盟出資贊助開放原始碼研究

  歐盟決定斥資 66 萬歐元的經費研究全球的開放原始碼軟體與標準。   歐盟在為期兩年的 FLOSSWorld 專案中,首度贊助的國際性開放原始碼軟體研發與政策發展計畫,先前的 FLOSS 專案主要只著重在歐洲的開放原始碼部分。 FLOSS 即為自由 / 開放原始碼軟體的縮寫 (free/libre/open source) ,藉由本專案,歐盟希望能夠強化歐洲在自由軟體領域的領導力,與增加國際合作夥伴。   FLOSSWorld 召集人 Rishab Aiyer Ghosh 向對外表示,歐盟通常是不贊助國際性專案的。而此次計劃共區分五大區域,而合作的國家包括中國 ( 東亞 ) 、印度與馬來西亞 ( 南亞 ) 、非洲 ( 南非 ) 、東南歐 ( 保加利亞與克羅埃西亞 ) 、中南美洲 ( 阿根廷與巴西 ) 。   研究將專注在三大領域:開放原始碼對於技能發展的影響,以及對經濟與新增職缺的影響;軟體開發的區域差異性;政府與公家單位對使用開放原始碼的態度。 Ghosh 指出 FLOSSWorld 的目標在增加國際層次的合作,增加對其他國家對於開放原始碼的使用與影響的了解程度。

日本公布「資料與競爭政策檢討會報告書」並探討資料收集利用違反《獨占禁止法》行為

  近年來,受到物聯網和人工智慧技術高度發展影響,大數據的重要性逐漸提昇。為避免資料不當收集和資料被不當佔據等可能妨礙競爭之行為,以利業者透過資料收集、累積和分析等方式,創造出新的產業價值,日本公平交易委員會於競爭政策研究中心設置「資料與競爭政策檢討會」,自2017年1月至6月間舉辦數次檢討會,並於2017年6月6日公布《資料與競爭政策檢討會報告書》。該書一共5章,內容為第1章檢討背景,第2章回顧資料環境變化與利用現狀,第3章檢討現今競爭政策及《獨占禁止法》,第4章資料收集、利用相關行為,以及第5章企業結合審查等與資料利用相關之事項。    報告書指出,業者不當收集資料和不當佔據資料等行為,均有適用《獨占禁止法》之可能。前者係指具有優勢地位的業者,利用關係要求有業務往來的企業提供資料等行為,如原本只需要性別和年齡資訊,卻額外要求對方提供住所、電話等訊息;後者則係指業者利用不正當方法與顧客聯繫,排除其他競爭者等行為,如排他性交易、拒絕交易、差別待遇等。

美國聯邦法官裁決AI「訓練」行為可主張合理使用

美國聯邦法官裁決AI「訓練」行為可主張合理使用 資訊工業策進會科技法律研究所 2025年07月07日 確立我國資料創新利用的法制基礎,建構資料開放、共享和再利用的各項機制,滿足民間及政府取得高品質、可信任且易於利用資料的需求,以資料提升我國數位發展的價值,並強化民眾權利的保障,我國於2025年6月16日預告「促進資料創新利用發展條例」,擬推動資料基礎建設,促進更多資料的釋出。 AI發展領先國際的美國,近日首次有聯邦法院對AI訓練資料表達肯定合理使用看法,引發各界關注[1]。我國已開始著力於AI發展所需的資料流通與有效利用,該判決將有助於啟示我國個人資料、著作資料合法使用之法制因應研析。 壹、事件摘要 2025年6月23日美國加州北區聯邦地方法院(United States District Court for the Northern District of California),威廉·阿爾斯法官(Judge William Alsup)針對Andrea Bartz、Charles Graeber、Kirk Wallace Johnson這三位美國作家,對Anthropic公司訓練大型語言模型(Large Language Model, LLM)時使用受其等著作權保護書籍一案,作出指標性的簡易裁決(summary judgment)[2]。 此案被告掃描所購買的實體書籍,以及從盜版網站複製取得的受著作權保護的書籍,儲存在其數位化、可搜尋的檔案中,用來訓練其正在開發的各種大型語言模型。原告主張被當開發Claude AI模型,未經授權使用大量書籍作為訓練資料的行為,為「大規模未經授權利用」。法院則以四要素分析架構,支持合理使用抗辯(Fair Use Defense),強調AI訓練屬於技術發展過程中不可或缺的資料利用,AI公司於模型訓練階段使用著作權書籍,屬於「合理使用」(Fair Use),且具「高度轉化性」(Highly Transformative),包括將購買的實體圖書數位化,但不包括使用盜版,也不及於建立一個永久性的、通用目的的「圖書館(library)」(指訓練資料集)。 貳、重點說明 依美國著作權法第107條(17 U.S.C. § 107)規定,合理使用需綜合考量四要素,法官於本案中認為: 一、使用的目的與性質—形成能力具高度轉化性 AI模型訓練的本質在於學習語言結構、語意邏輯,而非單純複製或重現原著作。AI訓練過程將大量內容作為輸入,經由演算法解析、抽象化、向量化,最終形成轉個彎創造出不同的東西 (turn a hard corner and create something different) 的能力,屬於一種「學習」與「再創造」過程。AI訓練的目的並非為了重現原著作內容,而是為了讓模型具備生成新內容的能力。這種「轉化性」(transformative use)極高,與單純複製或替代原著作的行為有明顯區隔[3]。 另外訓練過程對資料做格式變更本身並未增加新的副本,簡化儲存並實現可搜尋性 (eased storage and enabled searchability),非為侵犯著作權人合法權益目的而進行,亦具有轉化性 (transformative)。原告就所購買的紙本圖書,有權按其認為合適的方式「處置 (dispose)」,將這些副本保存在其資料集中,用於所有一般用途[4]。 二、受保護作品的性質--高度創作性非關鍵因素 法院認同原告所主張的書籍是具有高度創意(creative)的作品理應享有較強的保護。但法院亦認為合理使用的四個要素,須為整體衡量,儘管作品本身具有較高的創意性,但由於使用行為的高度轉化性以及未向公眾直接重製原作表達,整體而言,法院認定用於訓練 LLM 的行為構成合理使用[5]。 三、使用的數量與實質性--巨大數量係轉化所必要 法院認為AI模型訓練需大量內容資料,甚至必須「全書」輸入,看似「大量使用」,但這正是AI技術本質所需。AI訓練是將內容進行抽象化、數據化處理,最終在生成新內容時,並不會原封不動重現原作。所以,雖然訓練過程涉及全部作品,但AI模型的輸出並不會重現原作的具體表達,這與單純複製、重製作品的行為有本質區別[6]。 四、對潛在市場或價值的影響 本案法院明確指出,人工智慧模型(特別是原告的Claude服務)的輸出內容,通常為全新生成內容,並非原作的精確重現或實質模仿冒,而且Claude服務在大型語言模型(LLM)與用戶之間加入額外功能,以確保沒有侵權輸出提供予用戶。因此,此類生成內容不構成對原作的替代,不會削弱原作的銷售市場,也不會造成市場混淆,而且著作權法保護的是原創而非保護作者免於競爭[7]。 不過即便法院支持被告的合理使用主張,肯定AI訓練與著作權法「鼓勵創作、促進知識流通」的立法目的相符。但仍然指出提供AI訓練的合理使用(Fair Use)不代表資料來源的適法性(Legality of Source)獲得合法認定。沒有任何判決支持或要求,盜版一本本來可以在書店購買的書籍對於撰寫書評、研究書中的事實或創建大型語言模型 (LLM) 是合理必要 (reasonably necessary) 的。此類對原本可(合法)取得的圖書進行盜版的行為,即使用於轉化性使用並立即丟棄,「本質上」、「無可救藥地」(inherently、irredeemably)構成侵害[8]。 參、事件評析 一、可能影響我國未來司法判決與行政函釋 我國於現行著作權法第65條規定下,須於個案交予我國法院認定合理使用主張是否能成立。本案判決為美國首個AI訓練行為可主張合理使用的法院見解,對於我國法院未來就對AI訓練資料取得的合法使用看法,顯見將會產生關鍵性影響。而且,先前美國著作權局之報告認為AI訓練過程中,使用受著作權保護作品可能具有轉化性,但利用結果(訓練出生成式AI)亦有可能影響市場競爭,對合理使用之認定較為嚴格,而此裁定並未採取相同的見解。 二、搜取網路供AI訓練資料的合理使用看法仍有疑慮 依據本會科法所創智中心對於美國著作權法制的觀察,目前美國各地法院中有多件相關案件正在進行審理,而且美國著作權局的合理使用立場較偏向有利於著作權利人[9]。相同的是,均不認同自盜版網站取得的資料可以主張合理使用。然而AI訓練所需資料,除來自於既有資料庫,亦多來自網路搜取,如其亦不在可主張範圍,那麼AI訓練的另一重要資料來源可能會受影響,後續仍須持續觀察其他案件判決結果。 三、有效率的資料授權利用機制仍是關鍵 前揭美國著作權局報告認為授權制度能同時促進產業發展並保護著作權,產業界正透過自願性授權解決作品訓練之方法,雖該制度於AI訓練上亦尚未為一完善制度。該裁決也指出,可合理使用資料於訓練AI,並不代表盜版取得訓練資料可以主張合理使用。這對於AI開發而言,仍是須要面對的議題。我國若要發展主權AI, 推動分散串接資料庫、建立權利人誘因機制,簡化資料查找與授權流程,讓AI訓練資料取得更具效率與合法性,才能根本打造台灣主權AI發展的永續基礎。 本文為資策會科法所創智中心完成之著作,非經同意或授權,不得為轉載、公開播送、公開傳輸、改作或重製等利用行為。 本文同步刊登於TIPS網站(https://www.tips.org.tw) [1]相關新聞、評論資訊,可參見:Bloomberg Law, "Anthropic’s AI Book-Training Deemed Fair Use by US Judge", https://news.bloomberglaw.com/ip-law/ai-training-is-fair-use-judge-rules-in-anthropic-copyright-suit-38;Anthropic wins a major fair use victory for AI — but it’s still in trouble for stealing books, https://www.theverge.com/news/692015/anthropic-wins-a-major-fair-use-victory-for-ai-but-its-still-in-trouble-for-stealing-books;Anthropic Scores a Landmark AI Copyright Win—but Will Face Trial Over Piracy Claims, https://www.wired.com/story/anthropic-ai-copyright-fair-use-piracy-ruling/;Anthropic Wins Fair Use Ruling In Authors' AI Copyright Suit, https://www.thehindu.com/sci-tech/technology/anthropic-wins-key-ruling-on-ai-in-authors-copyright-lawsuit/article69734375.ece., (最後閱覽日:2025/06/25) [2]Bartz et al. v. Anthropic PBC, No. 3:24-cv-05417-WHA, Doc. 231, (N.D. Cal. June 23, 2025),https://cdn.arstechnica.net/wp-content/uploads/2025/06/Bartz-v-Anthropic-Order-on-Fair-Use-6-23-25.pdf。(最後閱覽日:2025/06/25) [3]Id. at 12-14. [4]Id. at 14-18. [5]Id. at 30-31. [6]Id. at 25-26. [7]Id. at 28. [8]Id. at 18-19. [9]劉家儀,美國著作權局發布AI著作權報告第三部分:生成式AI訓練-AI訓練是否構成合理使用?https://stli.iii.org.tw/article-detail.aspx?no=0&tp=1&d=9352。

TOP