2014年2月12日,美國發表「網路安全框架(Cybersecurity Framework)」,該框架係由美國政府、企業及民間機構花費一年的時間共同發展而成,其蒐集了全球現有的標準、指引與最佳實務作法,最後由國家標準技術局(National Institute of Standard and Technology, NIST)彙整後所提出。
本框架主要可分成三大部份:
1.框架核心(Framework Core)
框架核心包括辨識(Identify)、保護( Protect)、偵測( Detect)、應變( Respond)、與復原( Recover)等五項功能。這五項功能組成網路安全管理的生命週期,藉由這五項功能的要求項目與參考資訊的搭配運用,可使組織順利進行網路安全管理。
2. 框架實作等級(Framework Implementation Tiers)
共分成局部(Partial)、風險知悉(Risk Informed)、可重複實施(Repeatable)、合適(Adaptive)四個等級。組織可以透過對風險管理流程、整合風險管理計畫以及外部參與等三個面向的觀察,瞭解組織目前的安全防護等級。
3. 框架側寫(Framework Profile)
框架側寫係組織依照本框架實際操作後所產出的結果,可以協助組織依據其企業需求、風險容忍度,決定資源配置的優先順序,進一步調整其網路安全活動。
此一安全框架旨在提供整體規劃藍圖予尚未建立網路安全架構的組織參考,而針對已有建立網路安全架構者,該框架並未意圖取代組織原先的風險管理程序和網路安全計畫,而係希望協助公、私部門改善資通訊科技和工業控制系統風險管理的能力。
英國發布《AI保證介紹》指引,藉由落實AI保證以降低AI系統使用風險 資訊工業策進會科技法律研究所 2024年03月11日 人工智慧(AI)被稱作是第四次工業革命的核心,對於人們的生活形式和產業發展影響甚鉅。各國近年將AI列為重點發展的項目,陸續推動相關發展政策與規範,如歐盟《人工智慧法》(Artificial Intelligence Act, AI Act)、美國拜登總統簽署的第14110號行政命令「安全可靠且值得信賴的人工智慧開發暨使用」(Executive Order on the Safe, Secure, and Trustworthy Development and Use of Artificial Intelligence)、英國「支持創新的人工智慧監管政策白皮書」(A Pro-innovation Approach to AI Regulation)(下稱AI政策白皮書)等,各國期望發展新興技術的同時,亦能確保AI使用的安全性與公平性。 壹、事件摘要 英國科學、創新與技術部(Department for Science, Innovation and Technology,DSIT)於2024年2月12日發布《AI保證介紹》(Introduction to AI assurance)指引(下稱AI保證指引),AI保證係用於評測AI系統風險與可信度的措施,於該指引說明實施AI保證之範圍、原則與步驟,目的係為讓主管機關藉由落實AI保證,以降低AI系統使用之風險,並期望提高公眾對AI的信任。 AI保證指引係基於英國政府2023年3月發布之AI政策白皮書提出的五項跨部會AI原則所制定,五項原則分別為:安全、資安與穩健性(Safety, Security and Robustness)、適當的透明性與可解釋性(Appropriate Transparency and Explainability)、公平性(Fairness)、問責與治理(Accountability and Governance)以及可挑戰性 與補救措施(Contestability and Redress)。 貳、重點說明 AI保證指引內容包含:AI保證之適用範圍、AI保證的三大原則、執行AI保證的六項措施、評測標準以及建構AI保證的五個步驟,以下將重點介紹上開所列之規範內容: 一、AI保證之適用範圍: (一)、訓練資料(Training data):係指研發階段用於訓練AI的資料。 (二)、AI模型(AI models):係指模型會透過輸入的資料來學習某些指令與功能,以幫助建構模模型分析、解釋、預測或制定決策的能力,例如GPT-4。,如GPT-4。 (三)、AI系統(AI systems):係利用AI模型幫助、解決問題的產品、工具、應用程式或設備的系統,可包含單一模型或多個模型於一個系統中。例如ChatGPT為一個AI系統,其使用的AI模型為GPT-4。 (四)、廣泛的AI使用(Broader operational context):係指AI系統於更為廣泛的領域或主管機關中部署、使用的情形。 二、AI保證的三大原則:鑒於AI系統的複雜性,須建立AI保證措施的原則與方法,以使其有效執行。 (一)、衡量(Measure):收集AI系統運行的相關統計資料,包含AI系統於不同環境中的性能、功能及潛在風險影響的資訊;以及存取與AI系統設計、管理的相關文件,以確保AI保證的有效執行。 (二)、評測(Evaluate):根據監管指引或國際標準,評測AI系統的風險與影響,找出AI系統的問題與漏洞。 (三)、溝通(Communicate):建立溝通機制,以確保主管機關間之交流,包含調查報告、AI系統的相關資料,以及與公眾的意見徵集,並將上開資訊作為主管機關監理決策之參考依據。 三、AI保證的六項措施:主管機關可依循以下措施評測、衡量AI系統的性能與安全性,以及其是否符合法律規範。 (一)、風險評估(Risk assessment):評測AI系統於研發與部署時的風險,包含偏見、資料保護和隱私風險、使用AI技術的風險,以及是否影響主管機關聲譽等問題。 (二)、演算法-影響評估(Algorithmic-impact assessment):用於預測AI系統、產品對於環境、人權、資料保護或其他結果更廣泛的影響。 (三)、偏差審計(Bias audit):用於評估演算法系統的輸入和輸出,以評估輸入的資料、決策系統、指令或產出結果是否具有不公平偏差。 (四)、合規性審計(Compliance audit):用於審查政策、法律及相關規定之遵循情形。 (五)、合規性評估(Conformity assessment):用於評估AI系統或產品上市前的性能、安全性與風險。 (六)、型式驗證(Formal verification):係指使用數學方法驗證AI系統是否滿足技術標準。 四、評測標準:以國際標準為基礎,建立、制定AI保證的共識與評測標準,評測標準應包含以下事項: (一)、基本原則與術語(Foundational and terminological):提供共享的詞彙、術語、描述與定義,以建立各界對AI之共識。 (二)、介面與架構(Interface and architecture):定義系統之通用協調標準、格式,如互通性、基礎架構、資料管理之標準等。 (三)、衡量與測試方式(Measurement and test methods):提供評測AI系統的方法與標準,如資安標準、安全性。 (四)、流程、管理與治理(Process, management, and governance):制定明確之流程、規章與管理辦法等。 (五)、產品及性能要求(Product and performance requirements):設定具體的技術標準,確保AI產品與服務係符合規範,並透過設立安全與性能標準,以達到保護消費者與使用者之目標。 五、建構AI保證的步驟(Steps to build AI assurance) (一)、考量現有的法律規範(Consider existing regulations):英國目前雖尚未針對AI制定的法律,但於AI研發、部署時仍會涉及相關法律,如英國《2018年資料保護法》(Data Protection Act 2018)等,故執行AI保證時應遵循、考量現有之法律規範。 (二)、提升主管機關的知識技能(Upskill within your organisation):主管機關應積極了解AI系統的相關知識,並預測該機關未來業務的需求。 (三)、檢視內部風險管理問題(Review internal governance and risk management):須適時的檢視主管機關內部的管理制度,機關於執行AI保證應以內部管理制度為基礎。 (四)、尋求新的監管指引(Look out for new regulatory guidance):未來主管機關將制定具體的行業指引,並規範各領域實踐AI的原則與監管措施。 (五)、考量並參與AI標準化(Consider involvement in AI standardisation):私人企業或主管機關應一同參與AI標準化的制定與協議,尤其中小企業,可與國際標準機構合作,並參訪AI標準中心(AI Standards Hubs),以取得、實施AI標準化的相關資訊與支援。 參、事件評析 AI保證指引係基於英國於2023年發布AI政策白皮書的五項跨部會原則所制定,冀望於主管機關落實AI保證,以降低AI系統使用之風險。AI保證係透過蒐集AI系統運行的相關資料,並根據國際標準與監管指引所制定之標準,以評測AI系統的安全性與其使用之相關影響風險。 隨著AI的快速進步及應用範疇持續擴大,於各領域皆日益重要,未來各國的不同領域之主管機關亦會持續制定、推出負責領域之AI相關政策框架與指引,引導各領域AI的開發、使用與佈署者能安全的使用AI。此外,應持續關注國際間推出的政策、指引或指引等,研析國際組織與各國的標準規範,借鏡國際間之推動作法,逐步建立我國的AI相關制度與規範,帶動我國智慧科技產業的穩定發展外,同時孕育AI新興產應用的發展並打造可信賴、安全的AI使用環境。
FCC將電力線寬頻上網(BPL, Broadband over Power Line)服務分類為資訊服務FCC經過討論與投票,正式發佈命令將電力線寬頻上網服務分類為跨州資訊服務(interstate information service),而非電信服務,其他寬頻上網科技包括DSL、有線電纜線數據機寬頻上網亦被FCC分類為資訊服務。 過去幾年來,FCC一直大力支持電力線寬頻上網服務,期望電力線寬頻上網服務可以進入寬頻服務市場,與DSL和有線電視纜線數據機寬頻上網服務競爭,以增加寬頻服務市場之競爭,提高美國之寬頻普及率。而就此次所發佈之命令,FCC認為,將電力線寬頻上網分類為資訊服務將可使電力線寬頻上網服務受到較低的管制,有助於達成隨時隨地提供所有美國民眾寬頻接取之目標。其次,FCC在數位匯流時代之管制乃是期望能對於各種不同技術之寬頻接取平台給予一致的管制措施,並且對於相同之服務採取相同的管制方式。基於上述原因,FCC此次將電力線寬頻上網分類為資訊服務並不讓人感到意外。 FCC主席Kevin J. Martin進一步在其聲明中表示,雖然目前電力線寬頻上網人口並不多,然在2005年其成長率卻將近200%,顯見電力線寬頻上網服務之市場潛力不容忽視,將可幫助達成美國總統定下於2007年底前隨時隨地提供全國民眾寬頻網路接取之目標。
美國紐約州通過《政府自動化決策監督法》規範州政府使用自動化決策系統紐約州州長於2024年12月21日簽署《政府自動化決策監督法》(Legislative Oversight of Automated Decision-making in Government Act, LOADinG Act),用以規範紐約州政府使用人工智慧自動決策系統的方式以及相關義務,成為美國第一個通過這類法律的州。 該法所定義之「自動化決策系統」係指任何使用演算法、計算模型或人工智慧技術,或其組合的軟體,用於自動化、支援或取代人類決策;這類系統亦包括應用預定義規則或機器學習演算法進行資料分析,並在自動產生結論、建議、結果、假設、預測。 針對政府使用自動化決策系統之情形,《政府自動化決策監督法》有三大重點:人類監督、影響評估以及資訊揭露。 一、人類監督 州政府在提供社會福利資源或其他可能實質影響人民權益與法定權利的業務時,除非是在「有意義的人工審查」下進行操作,否則不得使用自動化決策系統。同時,此法也強調,州政府亦應確保其員工現有權利不會受到自動化決策系統的影響,例如不得因此受到解雇、調職或減薪等。 前述有意義的人工審查,係指對自動化決策流程進行審查、監督及控制的工作人員,必須是受過訓練、對該系統有一定之了解且擁有權力干預、變更系統最終決策的人。 二、影響評估 州政府如欲使用自動化決策系統,應進行影響評估且每兩年應至少重新評估一次;系統在進行重大更新前,也應重新進行影響評估。若評估發現系統產生歧視性或有偏見的結果,機關必須停止使用該系統及其生成的資訊。 影響評估的項目除了性能、演算法及訓練資料外,亦應進行準確性、公平性、偏差歧視、以及個人資料安全等相關測試。 三、資訊揭露 影響評估需在系統實施前至少30天提交給州長與州議會,並在相關機關的網站上公布;僅機關在特殊情況下(例如涉及公共安全考量),州政府可針對報告揭露之資訊進行必要的刪改,但必須說明做出此決定的原因。此外,州政府亦需於本法通過後向州議會提交報告,說明包括系統描述、供應商資訊、使用開始日期、用途、人類決策的支持或取代情況、已進行的影響評估摘要等。 本法強調對人工智慧技術的審慎應用,特別關注其對勞工權益的影響。該法明確規定,禁止在無人類監督的情況下,使用自動化系統進行失業救濟或育兒補助等福利的審核決策,並保障州政府員工不因人工智慧的實施而減少工作時間或職責。此類規定在現行立法中較為罕見,顯示出立法者對勞工權益的高度重視。該法的實施效果及影響,值得未來持續保持關注。
美國馬里蘭州法案禁止雇主近用(access)其員工及應徵者之社群網站資訊日前報導指出,在美國有部分的企業在面試時要求應徵者交出其臉書(Facebook)帳號及密碼,以供企業做為評估是否錄取之參考。企業這樣的舉動,遭論者類比為要求應徵者交出自家大門的鑰匙。據悉,企業此一傾向在九一一後有明顯增加之趨勢。 為因應此一趨勢所帶來的隱私疑慮,馬里蘭州在四月初已立法(撰稿時,此法尚待該州州長簽署)禁止雇主要求瀏覽或進入員工與應徵者的臉書或其他社交網站頁面,當然也包括禁止雇主取得員工或應徵者的臉書或社交網站帳號與密碼,或企圖成為員工及應徵者的「朋友」。 馬里蘭州此一立法,除了在保護員工或求職者的隱私之外,也是為了保障言論自由;且此一看似亦在保護應徵者及員工之法律,其實對企業亦有助益:其使原本處於法律灰色地帶的爭議問題明朗化,因而可使企業瞭解應如何因應,而可避免許多不必要的訴訟。 雖然輿論對此立法有許多贊同之聲,但亦不乏反對此一立法者,例如馬里蘭州的許多商業團體即認為瞭解求職者的社交活動,對於剔除不適任的應徵者,有其必要。 馬里蘭州此一立法乃率全美之先,其他各州可能亦陸續會提出類似法案。