日本總務省鑒於311地震時媒體播送的減災效果,在2014年2月14日對日本放送法施行規則的部分修正展開公眾諮詢。此次的修正係基於放送法母法第108條規定。依據該條的規範,基幹放送業者在進行國內的廣播時,若發生暴風、豪雨、洪水、地震、大型火災或有發生之虞時,為預防其發生或減輕其所造成之損害,應進行有效之廣播。
蓋日本在311災後,因其對對社會所產生巨大的衍生影響,後續規劃研擬了許多因應法制政策及措施。根據日本內閣府「2013年防災白皮書」,日本政府在311地震後所規劃政策方向及重要施政措施有:防災對策推進會議檢討會議的最終報告、災害對策法制的改正、與防災基本計畫的修正等各層面工作。
此外,依據日本防災對策推進會議檢討會議在2012年7月所完成之報告,其中對於災害立即回應體制的充實與強化,及建立綜合的防災資訊系統,建議應蒐集並提供必要之資訊,以盡早提供根本性的改善為目標。並且,為因應災害防救需要及強化即時應變能力,建立智慧防救災體系即屬刻不容緩,如何能運用各種多元性傳遞管道,落實將緊急性災害防救重要資訊傳送至每位國民,遂成關鍵議題。
而此次放送法施行規則的修正則擬增訂第86-2條,要求基幹放送業者應就基幹放送設備等向總務省所擬定的「基幹放送等整備計畫」;其中,關於母法108條廣播之確實實施而有特別必要者,並應取得總務省之確認。修正案擬增訂的101-2條除重複上述意旨,並要求總務省在確定確認上述計畫後,並應將公開其計畫的相關內容。 其中,對於地震防災對策特別措施法(地震防災対策特別措置法) 、水防法 與關於在土砂災害災害警戒區域內等的土砂災害防止推進的法律(土砂災害警戒区域等における土砂災害防止対策の推進に関する法律)等規範所訂定易受災區域內發信設備之設置,皆納入上述應被確認計畫的範圍。
日本屬地處地震頻繁國家,對於災害防救體系甚為重視,並投入大量資源加以發展。未來日本對於推動智慧防救災體系,是否會有更多進一步法制修改及調整,值得我們持續進行關注。
鑑於以知識產能為基礎而形成之專利、商標及著作權等智慧財產權,已成為促進國家產業升級及經濟發展之利器,而智慧財產權因無實體存在,故其權利之獲取及維護,端賴健全之智慧財產法制,故完善之智慧財產權爭訟程序,居於關鍵之地位。 智慧財產案件之審理,與一般訴訟相較,有其特殊性,例如其審理必須仰賴科技專業之協助,並經常涉及營業秘密之保護;又因智慧財產有關產品之市場更替週期短暫,因此其迅速審理之要求,具有等同於裁判正確之重要性。而針對智慧財產案件之特性,先進國家多設置專責審理智慧財產案件之專業法院,並就智慧財產訴訟,設有特殊之程序規定,以資因應。 反觀我國之專利法、商標法等智慧財產相關法律,就權利之取得及受侵害有關之訴訟,固亦設有若干特別規定,惟實際上仍有不足,未能充分符合智慧財產案件審理之需求,以致各界認為我國之智慧財產訴訟,仍然存有諸如證據蒐集手段欠缺,舉證困難,以及法官未具備法律以外之專業知識,並過度依賴鑑定結果,以致拖延訴訟,且裁判專業性不足等等缺點,未能符合社會之期待,甚至造成產業發展之障礙。 為改善我國智慧財產訴訟程序,發揮權利有效救濟之機能,司法院擬具「智慧財產法院組織法」及「智慧財產案件審理法」兩草案,期能藉由完善之智慧財產救濟制度,妥善保障智慧財產權人之權益,從而增進我國知識經濟之競爭力。 現今在智財案件處理實務上,權利人最常以提供擔保方式,聲請定暫時狀態處分,以禁止侵權者繼續製造、販賣及銷售商品。由於此舉可立刻讓侵權者沒辦法做生意,甚至逼迫下游供應商選邊站,殺傷力往往比訴訟的審理結果還大。考量智慧產案件之特性, 「智慧財產案件審理法」草案,將智慧財產權保全程序聲請門檻提高,要求聲請人應「釋明」理由,不能僅提供巨額擔保金,否則法官將不准其保全聲請。這項規定勢將促使企業更為審慎地提出「定暫時狀態」處分的聲請, 高科技企業未來將不能動輒利用假扣押等保全程序進行「騷擾」性商業戰術。 行政院院會於 4 月 19 日 已通過前二草案,但政院以附註意見方式,指智財法院應結合民、刑、行政「三合一」審理制度,對涉及行政處分「得」自為判斷,不能「應」自為判斷,期能快速解決訟爭,突破現行智財案件審理瓶頸。
日本提出設置沙盒制度的法律修正案日本內閣府於2018年3月13日閣議決定,提出「國家戰略特別區域法」的法律修正案,以特定的地域為限,創設供自駕車、無人載具等技術測試與實踐運行之用的沙盒制度。 該法案為使這些前所未有、具高度革新性的近未來技術用於實地測試時,在確保監督管道的前提下,能獲得迅速、具彈性且友善的法律環境配合,將上開技術測試運行的事前管制強度降至最低,而以強化事後查核機制取代之,期望藉此增進產業的國際競爭力,並建立國際性經濟活動據點。 依該法案的設計,將因沙盒制度而受惠的技術實踐行為類型,包含下列五種:(1)部分未符合道路運送車輛法第41條技術基準要求的汽車運行;(2)自駕車運行而似會影響一般交通之情形;(3)在具影響一般飛航安全之虞的空域內、或在住宅密集地區上空令無人機飛行之行為;(4)未依照航空法所定之列舉方式運行無人機之行為;(5)因上開(1)至(4)之行為而必須使用無線設備的情形。 於現行法的規範下,上開技術測試行為本係牴觸法規範而不被允許、或需依各該特別法規定於個案例外取得許可或使用執照的情形。 但經沙盒制度修正案的調整後,該些測試行為只要是在經國家戰略特別區域會議制定、且受內閣總理大臣等相關機關主管認可的個別技術實證區域計劃之框架下提出,並交由獲得認定的業者進行,即可例外容許其得以不須滿足(1)當中的法定技術基準要求,或直接擬制其已獲得許可;此外,就必須使用無線設備的情況,要求總理大臣盡速發給執照予符合資格的業者。 於事後查核機制,則在區域會議設置由第三方組成的技術實證評價委員會,對各該區域計劃進行評價。
Google新搜尋服務引發著作權侵權爭議網路搜尋引擎的巨人 Google ,近來有一項計畫,即對圖書館中的書籍做掃瞄,然後讓使用者透過網際網路搜尋書籍的內容。由於 Google 計畫掃瞄供搜尋的書籍中,包括許多目前仍受到著作權保護的著作,因此 Google 此舉,是否造成對書籍著作權的侵害,便引發了相當的爭議。 在近日的一個討論會中,學者、作者與出版商群聚一堂,就 Google 此一計畫的合法性進行討論,並就是否對 Google 進一步提出訴訟做討論。 Google 宣稱,此一計畫是人類知識發展的一大進步,把人類的觀念與想法,做有系統的歸類整理,並讓大眾更容易接近與使用,對於人類知識的傳播與進步,有重大貢獻。 然而,作者與出版商方面,則認為 Google 此舉侵害的作者與出版商的著作權。就此,作者與出版商已做出回應。先前,美國出版商協會 (The Association of American Publishers, AAP) 已於 10 月 19 日對 Google 提起訴訟,希望經由法律的判決,認定 Google 的作法侵害著作權。從法律上來看, Google 此一計畫是否侵害著作權,確有爭議之處。從美國作者與出版商激烈的反應來看,將來有可能還會有其他的訴訟,甚至集體訴訟 (Class Action) 的產生,其後續效應,值得觀察。
美國著作權局發布AI著作權報告第三部分:生成式AI訓練-AI訓練是否構成合理使用?美國著作權局發布AI著作權報告第三部分:生成式AI訓練-AI訓練是否構成合理使用? 資訊工業策進會科技法律研究所 2025年06月04日 美國著作權局於2025年5月發布著作權與AI第三部分報告之預出版本 (Copyright and Artificial Intelligence Part 3: Generative AI Training pre-publication version)[1],該報告重點為生成式AI訓練資料與著作權之關係,彙整各方意見並分析現行法制之挑戰及修改方向,目前發布之版本為預出版本,該報告說明將於近期發布最終確認版,預期其結論與實質內容並不會有修改。 壹、事件摘要 美國著作權局自2023年起即開始對AI所引發之著作權法律及政策問題進行研究,同年8月著作權局發布著作權及AI諮詢通知(Comments on Artificial Intelligence Notice of Inquiry, NOI),徵集各界對AI著作權議題之意見,著作權局亦針對相關議題舉辦多場公聽會及研討會協助意見之蒐集[2]。NOI發布後蒐集到之意見經著作權局整理分析,於2024年7月起發布AI著作權報告,第一部分為數位仿造,第二部分於2025年1月發布為就AI作品之著作可保護性之分析,而同年5月所發布之第三部分則聚焦於生成式AI之訓練。 生成式AI於訓練過程可能大量使用受著作權保護之作品,此份報告針對訓練過程可能涉及之著作權問題進行分析,主要說明AI模型訓練過程中使用受著作權保護作品是否可構成合理使用。 貳、重點說明 一、生成式AI模型訓練及模型權重對重製權之侵害 使用受著作權保護作品進行AI模型訓練涉及著作權中之重製,除非開發者能提出授權或其他合理抗辯如合理使用等,否則可能對一項或多項著作權利構成初步侵權(Prima Facie Infringement)。AI開發者於模型訓練階段會進行多次作品複製,包含下載作品、於儲存媒介間轉換、將作品進行格式化或製作副本等[3],模型訓練過程中暫時複製之作品亦有可能因其存在於時間足夠而構成重製權之侵害[4]。 在特定情形下,模型權重(model weights)[5]之複製亦可能構成重製權之侵害。訓練過程可能使模型權重包含著作權作品,而若第三方複製了包含著作權作品之模型權重,即便其未參與模型之訓練,亦可能構成初步侵權[6]。若模型能在未經外部輸入之情形下產出與訓練範例相似之內容時,表示此範例必以某種形式存在於模型權重中,故此模型權重之複製極有可能侵犯著作重製權[7]。換言之,不僅開發者有可能因模型權重之複製侵害著作權人之權利,部署、使用等第三方若複製模型權重亦有可能構成對重製權之侵害。 著作權局指出,模型權重究竟是否會構成重製權或甚至衍生作品之侵權,須判斷該模型權重是否保留與作品受權利保護部分實質相似之內容,僅有在實質相似之情形下,模型權重之複製才可能構成侵權[8]。 二、合理使用 對著作權作品之合理使用可做為作品重製權的抗辯,著作權局於報告中就不同因素分析AI使用著作權作品進行訓練是否得主張合理使用。AI於訓練過程中會有多次複製行為,惟在判斷AI模型訓練是否為對作品之合理使用,仍須視整體使用情境進行判斷[9]。 (1) 作品轉化性須視模型目的及佈署判斷 報告中分析作品之轉化性(transformativeness)[10],AI訓練使用作品是否具有轉化性並非絕對,而是依據模型最終之功能及佈署有程度上之區別,須依個案判斷。若模型之訓練目的為用於研究或封閉系統,則該模型具高轉化性;若其目的是生成與訓練用作品實質相似之結果時,不具轉化性。多數模型之轉化程度會落在前述兩極端之中間,如模型使用特定類型之作品進行訓練,用以生成使用目的與原作相同之內容時,即便其生成內容未有實質相似,頂多僅為有限度之轉化(modestly transformative)[11]。AI開發商得於其系統設置防護措施,限制模型複製受著作權保護作品之節錄內容,使生成內容之目的與原作品不同,此措施能使模型訓練更具轉化性[12]。 有論者認為,使用受著作權保護作品進行AI模型訓練並非出於表達目的,且近似人類學習,因此實質上應是具有轉化性的,著作權局否定了前述兩種說法。報告中說明,語言模型於訓練時所吸收的內容包含文句、段落及文件之排列選擇,並非單純僅吸收其單字含意,且所生成之模型是被用作創造表達性內容,故不得謂AI模型為非表達性目的[13]。其次,針對人類學習觀點,報告首先闡明,學生基於學習目的亦不得以合理使用為由複製整本著作,因此人類學習並不得直接作為合理使用之抗辯。生成式AI之訓練能迅速分析並生成完美之作品,此非如同人類經學習後會產出具個別人格特質之結果,故著作權局不同意AI模型之訓練為與人類學習相同具有轉化性之論點[14]。 (2) 受著作權保護作品之表達性 AI訓練所使用之受著作權保護作品若具較高創作或表達性,如小說、電影等,其著作權比其他作品如電腦編碼等功能性作品更接近著作權之保護核心。而AI模型訓練來源多元,因此判斷上仍須視個案模型及作品而定。 (3) 使用作品之合理比例 AI模型訓練需大量複製受著作權保護作品,於判斷其複製比例是否合理時,係判斷模型訓練所複製之部分對於受著作權保護作品之數量及重要性使否合理[15]。作品使用之合理性,須考量重要性以及數量,若模型僅使用小部分作品做訓練,但該部分為著作權作品之核心部分,此使用並不一定合理。 在使用完整作品層面,生成式AI較一般搜尋引擎更不具合理性,生成式AI所提供之資訊並非僅限於其訓練資料庫中所複製作品資料。然而,許多生成式AI之訓練方式必須使用完整作品進行訓練,因此,著作權局指出,雖開發者使用完整作品進行訓練與合理使用相悖,但若其訓練具有轉化性目的(transformative purpose),並且有必要透過大量作品之訓練以提升模型效能時,則使用整部作品進行訓練可能被認為合理[16]。換言之,使用完整作品進行訓練合理與否須連同其使用必要性及訓練目的一併考量。 (4) 影響原作品之潛在市場或價值 報告中點出三項生成式AI訓練可能造成的市場危害。 A 銷售損失(lose sale):權利人因潛在消費者選擇AI複製創作取代原作,而失去收入。 B 市場稀釋 (market dilution):AI生成內容之速度以及規模對訓練資料中同類作品之市場造成稀釋風險,原作者將更難銷售其作品亦將使消費者更難找到真人創作之作品[17]。AI所生成風格相似之作品亦會導致市場稀釋,風格非為著作權所保障之方為,惟若AI生成與作品風格相似之內容,即便未有實質相似,但消費者可能因此難以分辨AI創作與真人作者,將使AI作品與原作者之作品於市場上直接競爭而影響原市場[18]。 C 喪失授權收入機會 (lost licensing opportunities):權利人本可就其作品於市場上有授權收入之機會,但因AI未經授權使用作品進行訓練而喪失該部分收入[19]。 三、 授權使用 對於AI自願授權之情形於近年越來越普遍,報告亦肯認自願授權之可行性,雖自願授權可行,且已有開發商開始實施,惟對於完全滿足AI產業之需求仍存有疑義[20]。該報告認為,即便現階段自願性授權仍為發展中之制度,但該制度確實能避免使用著作權作品之不確定性。著作權局認為應讓自願性授權制度於授權市場於無政府干預情形下繼續發展,若未來於特定類型作品中出現失靈情形時,再考慮進行擴大集體授權等干預措施[21]。 參、事件評析 AI訓練使用著作權保護作品是否可以合理使用作為抗辯為近年AI發展下著作權高度討論問題之一。目前美國各地法院中有40多件相關案件正在進行審理,然就此報告之結論觀之,其並未對AI訓練是否可作為合理使用給予統一解答,合理使用與否仍須視個案而定。如同報告結論所提及,AI訓練過程中,使用受著作權保護作品可能具有轉化性,但是否足以構成合理使用,仍須視其所使用之作品、來源以及目的等個案因素而定[22]。AI訓練於著作權仍存在一定程度之不確定性。 值得注意的是,雖報告並未明示AI訓練使否為合理使用著作權作品,惟其立場似乎更偏向有利於著作權利人。例如報告中於轉化性認定具有灰色地帶,開發商是否能主張合理使用仍需於後續由法院個案認定。此外,報告中提及市場稀釋理論,目前尚未有法院採用,對合理使用之認定較為嚴格,即使未有實質相似之生成內容亦有可能因影響市場競爭被視為非合理使用,可見該理論對著作權利人之權利保障。 同時著作權局亦正向看待產業界透過自願性授權進行作品訓練之方法,雖該制度於AI訓練上尚未為一完善制度,但確實地授權制度能同時促進產業發展並保護著作權[23]。目前實務上亦是以此種作法解決合理使用之困境,但授權制度仍有待市場持續發展完善制度以確保能符合AI訓練之需求。 美國著作權局之報告雖對AI使用著作權保護作品進行訓練進行分析及說明,惟其結論仍是認為判斷上需依照個案分析。目前國際上尚未有對AI合理使用之實際定論,自願性授權仍為產業界所使用之方法。我國著作權法亦未對AI訓練之合理使用有說明,國際上將會如何發展仍有待觀察。 資策會科法所創智中心致力於著作權相關科技法律研究,本中心將持續關注相關議題並更新動態。 本文為資策會科法所創智中心完成之著作,非經同意或授權,不得為轉載、公開播送、公開傳輸、改作或重製等利用行為。 [1]U.S. Copyright Office Copyright and Artificial Intelligence, Part 3: Generative AI Training pre-publication version, https://www.copyright.gov/ai/Copyright-and-Artificial-Intelligence-Part-3-Generative-AI-Training-Report-Pre-Publication-Version.pdf [2]U.S. Copyright Office, Copyright Office Issues Notice of Inquiry on Copyright and Artificial Intelligence, https://www.copyright.gov/newsnet/2023/1017.html (last viewed: 2025/05/19) [3]supra note 1, at 26. [4]Id. at 27. [5]AI模型之建立仰賴神經網,主要功能為將輸入資料轉換為輸出資料。神經網路之運作方式係透過大量於訓練過程中產生之參數進行運案,而該些參數即為「權重」(weights)。 [6]Id. at 28. [7]Id. [8]Id. at 30. [9]Id. at 36-37. [10]轉化性係指新作品加入新元素,具有與原作不同目的或性質,且以新表達、意義或訊息改造原作。並且新作品於市場上較不會取代原作。 [11]Id. at 46. [12]Id. [13]Id. at 47. [14]Id. at 48. [15]Id. at 54. [16]Id. at 60. [17]Id. at 65. [18]Id. at 65-66. [19]Id. at 66-67. [20]Id. at 85. [21]Id. at 106. [22]Id. at 107. [23]Id. 本文同步刊登於TIPS網站(https://www.tips.org.tw)